THE "THIRD LETTER" OF NICHOLAS RHABDAS: AN AUTOGRAPH EASTER COMPUTUS

Fabio Acerbi
CNRS, UMR8167 Orient et Méditerranée, équipe "Monde Byzantin", Paris
fabacerbi@gmail.com

Abstract

The article presents an edition, a translation, a technical commentary, and a thematic word index of the Easter Computus authored by the Byzantine mathematichian Nicholas Artabasdos Rhabdas. It is also shown that this work is preserved as an autograph.

Keywords: Easter Computi, Byzantine mathematician, autograph works

Resumen

El artículo presenta una edición, una traducción, un comentario técnico y un índice de palabras temáticas del Computus pascual escrito por el matemático bizantino Nicolás Artabasdos Rhabdas. También se muestra que esta obra se conserva como autógrafa.

Metadata: Computi pascuales, matemático bizantino, obras autógrafas

THE "THIRD LETTER" OF NICHOLAS RHABDAS: AN AUTOGRAPH EASTER COMPUTUS*

Fabio Acerbi

That the early- $14^{\text {th }}$ century Byzantine scholar Nicholas Artabasdos Rhabdas (PLP, nr. 1437) wrote a fully-fledged Easter Computus-and not only the short thematic section included in his Rechenbuch, also referred to as the Letter to Tzavoukhes-is known since 1953. This piece of information is printed on page 81 of volume IX. 2 of the Catalogus Codicum Astrologorum Graecorum, in the description of the manuscript Leeds, University Library, Brotherton Coll. MS 31/3. Seventy years later, this text is finally published in print.

Brotherton Coll. MS 31/3 is the last of a set of three manuscripts, ${ }^{1}$ all containing treatises and extracts of astronomical and astrological argument. MS 31/1 comprises excerpts (accompanied by scholia) ${ }^{2}$ from Ptolemy's Almagest, Books III and IV, ${ }^{3}$ and

[^0]his entire Hypotheses Planetarum, ${ }^{4}$ as well as extracts from Theon's commentary on the Almagest. ${ }^{5}$ Short astronomical texts are also found in this manuscript. ${ }^{6}$ MS 31/2 contains only the entire commentary of Stephanus of Alexandria on Ptolemy's Handy Tables, written by two hands (a collaborator of the main hand copied from the middle of the first line of f .20 v to the end of f .21 r$).^{7}$ MS 31/3 comprises astrological texts and Rhabdas' Computus on ff. 64r-69r (pp. 127-137). The contents of this manuscript are described in detail in CCAG IX. 2^{8} with the exception of the final table (ff. 70v-71r)

[^1] ends with the marginal note $\lambda \varepsilon \dot{i} \pi \varepsilon \iota \dot{\varepsilon} \xi \tilde{\eta} \varsigma \sigma \tau \dot{\chi} о \iota \iota \alpha^{\prime} \dot{\omega} \varsigma \dot{\alpha} \pi o ̀ \tau \tilde{\omega} \nu \pi \rho о \kappa \varepsilon \iota \mu \dot{\varepsilon} \nu \omega v$; this is, in fact, the partly incomplete version of the treatise carried by Heiberg's second stemmatic family (Claudii Ptolemaei opera quae exstant omnia, II, Opera astronomica minora, ed. J.L. Heiberg, Lipsiae 1907, CLXIX-CLXXIV).
${ }^{5}$ These extracts are found on ff. 24v-27v, in Alm. I.4, 381.8-392.28 Rome; ff. 27v-33r, in
 the 1538 Basel edition. Recall that the Basel edition prints a Byzantine recension of Theon's commentary; however, MS 31/1 does not carry the text of the Byzantine recension.
${ }^{6}$ These short texts are found on ff. 19v-22r (see numbers II-XI and XIII, des. line 6 , in A. Tihon, "Les scholies des Tables Faciles de Ptolémée", Bulletin de l'Institut Historique Belge de Rome 43 [1973], 49-110); ff. 22v-23r, a selection of the preliminary material found in some manuscripts of the Almagest (edition A. Jones, "Ptolemy's Canobic Inscription and Heliodorus' Observation Reports", SCIAMVS 6 [2005], 53-97); and ff. 23v-24r (see numbers I and XV in the cited paper by Tihon).
${ }^{7}$ This possibly important-and certainly one of the earliest-witness is not recorded in the recent edition of Stephanus' treatise, namely, J. Lempire, Le commentaire astronomique aux Tables Faciles de Ptolémée attribué à Stéphanos d'Alexandrie. Tome I. Histoire du texte. Édition critique, traduction et commentaire (chapitres 1-16) (Corpus des Astronomes Byzantins 11), Louvain-La-Neuve 2016. In MS 31/2, Stephanus' treatise (in 38 chapters; it belongs to Lempire's class II) occupies ff. 2r-76v. It is preceded by a pinax of the work (f. 1r; f. 1v is blank) and followed by the tables of the rising times of the zodiacal signs for the $7^{\text {th }}$ klima and for Byzantium (f. $77 \mathrm{r}-\mathrm{v}$) and by an horoscope, that is, a list of the positions on the ecliptic of the seven planets and of the ascendant, for the day of Creation (as usual, only the zodiacal signs are marked) and for the foundation of Constantinople (f. 78r). On these horoscopes, edited in Catalogus Codicum Astrologorum Graecorum, I-XII, Bruxelles 1898-1953, IX.2, Codices Britannicos, Pars altera, ed. S. Weinstock, 1953, 176-178 (the editor did not rely on MS 31/2 as his source), see D. Pingree, "The Horoscope of Constantinople", in Y. Maeyama, W.G. Salzer (eds.), ПPILMATA. Naturwissenschaftsgeschichtliche Studien. Festschrift für Willy Hartner, Wiesbaden 1977, 305315. Marginalia of hands different from the main copyist are on f. 6r, note dated AM 6978 [= 1469] December 29, and on f. 76 v , where one finds an undated note. The quire composition of MS $31 / 2$, written on $26-31$ lines per page, is $9 \times 8,1 \times 8-1$, the quire numbers are marked in the lower external corner of the first and of the last page of each quire (number ζ ' is wrongly located on f. 49r).
${ }^{8}$ CCAG, IX. 2 (cit. n. 7), 78-81. The dimensions are mm 220×150, there are $25-31$ lines per page. The hands are distributed as follows (I. Pérez Martín, per litteras). Hand 1: ff. 1r-6v,
which, by employing Indo-Arabic numerals of the Western form, ${ }^{9}$ lists all numbers from 11 to 100 along with one of their factorizations in two numbers noted as parts (as for instance $1 / 7$; three factors are indicated only for the numbers 96 and 98). In this table, prime numbers are marked by a special sign; they are further listed in a small table on f .71 v . I have not yet been able to understand the rationale behind the small table on f. 70r.

These three manuscripts were copied in the first half of the $14^{\text {th }}$ century. In MS $31 / 3$, the example given in the astrological text on f . 41v carries the date AM 6812 [= 1304] March 12^{10}; this date agrees with the fact that several pages of the manuscript are written in an imitative script. ${ }^{11}$ In MS 31/3, Rhabdas' Computus comes straight after the astrological collection, and is, in fact, an autograph of him, as a very recent finding confirms. ${ }^{12}$ Rhabdas also penned most of MS 31/2; it is likely that he himself assembled this astronomical and astrological miscellany by adding his own transcriptions to pre-existing material. MS 31/3 was most likely available within Nicephoros Gregoras' entourage, since it has been very selectively corrected and annotated by Isaac Argyros, one of

8r, 11v-12r, 13r-v, 15r-23v, 24v-25r, 26r-27r, 28v-29r, 38r, 41r-42r15; hand 2, imitative: ff. 7r-v, $8 \mathrm{v}-11 \mathrm{r}, 12 \mathrm{v}, 14 \mathrm{r}-\mathrm{v}, 24 \mathrm{r}, 25 \mathrm{v}, 27 \mathrm{v}-28 \mathrm{r}, 29 \mathrm{v}-37 \mathrm{v}, 38 \mathrm{v}-40 \mathrm{v}, 42 \mathrm{r} 15-63 \mathrm{v}$; hand 3 (Rhabdas): ff. 64r-69r. Marginalia and corrections on ff. 1r-2r, 4r-v, 13r, 18r, 41v, 63v, by Isaac Argyros. On f. 66v, lower margin, in red ink, numerals, $\varsigma خ$ оך $\kappa \eta \sigma \kappa \tau \kappa \varsigma$. In Rhabdas' text, some brief parts have been rewritten by a later hand to cover water damage.
${ }^{9}$ According to Alessandra Petrocchi, whom I thank for the suggestion provided, some of these numeral-forms are common to those found in manuscripts written in medieval Latin and early Italo-Romance vernaculars and dating from the $13^{\text {th }}$ and $14^{\text {th }}$ centuries.
${ }^{10}$ To denote dates, I adopt the astronomical convention era - year - month - day.
${ }^{11}$ On imitative script in scientific manuscripts, see F. Acerbi, A. Gioffreda, "Manoscritti scientifici della prima età paleologa in scrittura arcaizzante", Scripta 12 (2019), 9-52. This style of writing was almost uniquely used in the period 1260-1310.
${ }^{12}$ The finding involves a document of the Chilandar monastery dated 1323 and redacted by an imperial surveyor who signs himself as Nicholas Rhabdas; this document will be published in O. Delouis, M. Živojinović, Actes de Chilandar. II. De 1320 à 1335 (Archives de l'Athos 24), Paris, forthcoming, nr. 90 . Once the identification with our Rhabdas was confirmed by R. Estangüi Gómez, Estangüi Gómez himself, I. Pérez Martín and I conducted a cross-examination and were able to find Rhabdas' hand in the Leeds manuscripts, in his own (incomplete) square root table presented to Nicephoros Gregoras, now preserved in the manuscript Heidelberg, Universitätsbibliothek, Pal. gr. 129 (mainly $14^{\text {th }}$ century; Diktyon 32460), ff. 11v-12r, and in Par. gr. 2650 (Diktyon 52285), ff. 147r-150v (ternion 147-152, the rest is blank apart from some monocondyla on f. 152r). The Paris manuscript exhibits another autograph work by Rhabdas, for ff. 147r-150v are the only extant witness of the grammar he composed for his own son Paul Artabasdos: see F. Acerbi, D. Manolova, I. Pérez Martín, "The Source of Nicholas Rhabdas' Letter to Khatzykes: An Anonymous Arithmetical Treatise in Vat. Barb. gr. 4", Jahrbuch der Österreichischen Byzantinistik 68 (2018), 1-37, n. 6 at 2-3.

Gregoras' pupils and a prominent figure among the mathematically-minded scholars of the second half of the $14^{\text {th }}$ century. ${ }^{13}$

The structure of this paper is as follows: in section 1, I introduce Rhabdas and his Computus, in section 2, I edit the Computus, translate it, and explain its content in a paraphrase and in a running commentary. In the paraphrase, I also present a symbolic transcription of the computational sections. The Appendix contains a thematic word index.

1. Introducing Rhabdas' Computus

Nicholas Artabasdos Rhabdas of Smyrna was a high-brow imperial functionary and scholar in Constantinople around 1320-42; he was connected with Nicephoros Gregoras and the circle of Maximus Planudes' pupils. His administrative role has been clarified by the same recent finding that has also led to the identification of his handwriting. ${ }^{14}$ Rhabdas had a strong interest in mathematical matters; among other things, he wrote two logistic treatises in epistolary form: these are an arithmetic primer on the elementary operations with IndoArabic numerals (the so-called Letter to Khatzykes) and a Rechenbuch (the so-called Letter to Tzavoukhes). The latter also includes a short computistical section; ${ }^{15}$ as in most Computi containing worked-out examples, this section also calculates the date of Easter for a year that is stated to be the current year, and the text can thus be dated to 1341 . For the same reason, the autograph Computus in MS 31/3 can be dated to 1342 .

In writing his Computus, Rhabdas adopted the same literary form he employed in writing the other two mathematical works mentioned above: a letter addressed to a friend. ${ }^{16}$ It is plausible that Rhabdas' Computus (which I shall also call Letter to Myrsiniotes) is the last of the series of three mathematical letters we know he authored;
${ }^{13}$ On Argyros see A. Gioffreda, Tra i libri di Isacco Argiro (Transmissions 4), Berlin Boston 2020.
${ }^{14}$ On Rhabdas' life and works (he wrote other texts) see the updated synthesis in Acerbi, Manolova, Pérez Martín (cit. n. 12), 2-6, and the new data collected in F. Acerbi, "A New Logistic Text by Nicholas Rhabdas", Byzantion 92 (2022). It goes without saying that Rhabdas' institutional role as a functionary of the fiscal administration fits remarkably well the contents of his Letter to Tzavoukhes.
${ }^{15}$ Editions of these two Letters are available in P. Tannery, "Notice sur les deux lettres arithmétiques de Nicolas Rhabdas", Notices et extraits des manuscrits de la Bibliothèque Nationale 32 (1886), 121-252, repr. Id., Mémoires scientifiques, IV, Toulouse - Paris 1920, 61-198, on pages 86-116 (Letter to Khatzykes) and 118-186 (Letter to Tzavoukhes). The computistical section in the Letter to Tzavoukhes is on pages 134.23-138.28.
${ }^{16}$ After Rhabdas, this format of scientific writing was also adopted by Isaac Argyros, in a short geometric metrological text (the Letter to Kolybas) and in his Easter Computus (the Letter to Andronikos Oinaiotes). See the discussion in Pérez Martín, "Enseignement" (cit. n. 2).
what is certain is that the Letter to Myrsiniotes is later than the Letter to Tzavoukhes. Rhabdas' authorship is declared in the title of the Letter to Myrsiniotes, whose structure is identical to the structure of the title of the other two Letters. In our case, the addressee is an otherwise unknown Demetrius Myrsiniotes who, according to the title, was an elder, and particularly dear, friend of Rhabdas'. Were the title missing, Rhabdas' authorship would still be unquestionable because his autograph Computus begins with the same verbatim extract from the beginning of Diophantus' Arithmetica which opens the other two Letters. Moreover, in the final section of his autograph Computus Rhabdas reproduces a portion of his own brief Computus included in the Letter to Tzavoukhes; the reused passage provides an algorithm that allows one to calculate the date of Easter without having to compute that of Passover before. To sum up, Rhabdas expanded the computistical section of his own Letter to Tzavoukhes into a fully-fledged Computus.

Rhabdas' Computus presents standard features: it explains how to calculate the following items: indiction, solar, and lunar cycle years (sects. 2-5), the "base" of the Moon (sect. 6), the age of the Moon on a specific date (sect. 7), the epacts of the Moon (sect. 8), knowing its age, the visibility of the waxing and waning Moon (sect. 9), the date of Passover (sect. 10), the weekday on which Passover falls, and, consequently, the date of Easter (sect. 11), what years are leap years (sect. 12), the date of Meat-Fare Sunday (sect. 13), the duration of Apostles' Fast (sect. 14), and, finally, a paschalion Meat-Fare Sunday - Easter - Apostles' Fast, in this very order and, unlike the algorithm in sect. 11, without using Passover (sect. 15). Rhabdas' Computus is purely technical; only sects. 2 and 13 contain substantial discursive sequences, namely on the meaning and the origin of indiction (an excursus that tallies with Rhabdas' role in the Byzantine administration) the former, and on the disagreement over the date of Easter among some regional Christian churches the latter. All sections of this Computus present worked-out examples; apart from a single slip of pen, all given calculations are correct. However, as I shall point out in the next sections, the Computus contains some serious methodological mistakes, thereby suggesting that the material for which Rhabdas claims original authorship was, in fact, drawn from other sources. This is not surprising, as in his Letter to Khatzykes Rhabdas also silently appropriated an anonymous treatise written several decades earlier. ${ }^{17}$ I have not been able so far to locate the Computus which has been Rhabdas' source for his Letter to Myrsiniotes.

2. Rhabdas' Computus: Edition, Translation, and Commentary

The manuscript containing Rhabdas' text presents only one copying mistake and four minor errors that can be attributed to distraction; there are also some corrections. In the

[^2]edition which I present in this section I have retained the original accents of proclitics and enclitics. I have decided not to keep the original punctuation for the following reasons: ${ }^{18}(1)$ in many occurrences, it is not possible to ascertain whether a point is marked by the author as upper or lower (and in some cases, even distinguishing between a comma and a point is impossible); (2) Rhabdas is not consistent with punctuating the algorithms: Computi use formulaic expressions and the author's inconsistency is sometimes self-evident; (3) studying Computi as a textual corpus involves comparing the algorithms they contain: uniformity in punctuation is therefore required. Other editorial conventions are: I have maintained adverbial expressions written in one single word as they appear; "aberrant" verb forms such as $\varepsilon \dot{v} \rho \dot{\theta} \theta \eta$ (the augment is missing) are not corrected; numeral letters standing for integers are not marked by an apex; ordinals that in the text are given as numeral letters are written with a raised ending; according to the context, dates are treated as integers or as ordinals.

I have subdivided the text into thematic sections, most of which coincide with Rhabdas' paragraphs. The sequences that Rhabdas appropriated from Diophantus' Arithmetica (in sect. 1) or that he reproduced from his own Letter to Tzavoukhes (in the title and in sect. 15) are underlined. Each section presents the Greek text, its translation, preceded by a short title in italics, a paraphrase, and a commentary. The translation is faithful to the structure of the Greek text, especially within algorithms, where, however, I traslate the aorist tense by a present tense; readers will find in Rhabdas' Computus a fine specimen of immoderate-yet perfectly idiomatic—use of emphatic кai. A thematic word index is found in the Appendix. The paraphrase and the commentary are printed in reduced font size and are preceded by the titles Par and Comm, respectively. My commentary to Rhabdas' work presents the context, clarifies some ambiguous points, and gives references to similar algorithms found in published Computi. The computational sequences are expressed in symbolic form.

Before presenting the text, some preliminary explanation of the determination of the date of Easter seems appropriate. The determination of the date of Easter in an assigned calendar year is traditionally reduced to finding the date and the weekday for that very year upon which the Jewish festival of Passover falls. This corresponds to the $14^{\text {th }}$ day of a schematic lunar month and must occur on or straight after the Spring equinox, ${ }^{19}$

[^3]whose date was fixed, as far as computistical matters are concerned, to March 21. Easter is the first Sunday after Passover; if Passover falls on Sunday, Easter is celebrated on the Sunday next thereafter. ${ }^{20}$ Since Passover occurs on a fixed day of a specific lunar month, its date and the date of Easter vary from year to year. The dates of all other festivals in the annual Christian calendar which depend on Easter must vary with it, which explains why the Easter date must be calculated in advance. In order to determine it, it is essential to know-for the given year and possibly for a period of time-the beginning of each lunar month, that is, the date of the new Moon. This was ascertained by means of reasonably accurate approximations for the motions of the Sun and of the Moon, called "cycles"; in the case of the Moon, a cycle is a time interval after which the sequence of new Moons repeats itself on the same dates. In Computi, "Passover" is therefore the $14^{\text {th }}$ day of a schematic lunar month in a lunisolar cycle (henceforth "lunar"). ${ }^{21}$ In the middle and late Byzantine period, a 19-year lunar cycle was almost unanimously adopted (see below for more details).

Once a cycle is adopted, all new Moons in it occur on fixed dates, which entails that the date of Passover in each year of the cycle is also fixed: a cycle uniquely determines a sequence of Passover dates, ${ }^{22}$ which repeats with the periodicity of the cycle. Once the
of the Christian Era, Oxford 2008; still useful although poorly organized is V. Grumel, La Chronologie (Traité d'Études Byzantines 1), Paris 1958, 1-128. The Alexandrian Computus, from which the tradition of the Byzantine Computus stems, has been masterly reconstructed in O. Neugebauer, Ethiopic Astronomy and Computus (Sitzungberichte der Österreichischen Akademie der Wissenschaften 347), Wien 1979, and O. Neugebauer, Abu Shaker's Chronography (Sitzungberichte der Österreichischen Akademie der Wissenschaften 498), Wien 1988. See also the discussion in F. Acerbi, "Byzantine Easter Computi: An Overview with an Edition of Anonymus 892", Jahrbuch der Österreichischen Byzantinistik 71 (2021), where I edit what I have called Anonymus 892 and where the reader finds a list of the several Anonymi I shall cite in the following footnotes.
${ }^{20}$ To cite a source near to Rhabdas' times for instance, four "necessary conditions" (δ ıopıб \boldsymbol{o}; I am pretty sure that Barlaam is alluding to the mathematical meaning of the term: see Acerbi, The Logical Syntax [cit. n. 18]. sect. 4.2.1) for the Easter date are emphasized by Barlaam in his Computus: A. Tihon, "Barlaam de Seminara. Traité Sur la date de Pâques", Byzantion 81 (2011), 362-411, at 376 (sect. 22).
${ }^{21}$ A lunar cycle is "lunisolar" because the occurrence of a new Moon depends on the position of the Sun. As lunar cycles are only approximations of the actual lunar motion and the length of the synodic month varies, the actual date of Passover and the computistical Passover may not always coincide; in Rhabdas' times this lack of synchronization amounted to about two days (see sect. 13).
${ }^{22}$ Given the fact that a lunar month extends over 30 days and that the lunar cycle adopted in Byzantine Computi lasts 19 years, there are gaps in the sequence of the dates of Passover: see Rhabdas' table at the end of sect. 15.
date of Passover is known, one has to compute the weekday upon which it falls; the date of Easter is then easily determined. All the computations involved in the above-mentioned steps were formalized in standard discursive patterns which I refer to as "algorithms". Very simple algorithms compute the lunar cycle year of any assigned year in a given era (see sects. $\mathbf{2}$ and $\mathbf{5}$ in Rhabdas' Computus); knowing the lunar cycle year, the date of Passover can then be calculated (sect. 10). Other algorithms compute the weekday of any assigned date in any given year (sects. 3, 4, and 11). Combining these data, the date of Easter is easily found (again sect. 11); from the date of Easter, the dates of all other movable feasts can be computed (sects. 13 and 14). Any Computus, and Rhabdas' Computus in particular, consists of a collection of such algorithms; authors sometimes supply alternative algorithms (as for Rhabdas, see sect. 15) and algorithms for computing other quantities which are differently relevant to the subject-matter (compare sects. 6, 8, and $\mathbf{1 2}$ to sects. $\mathbf{7}$ and 9).

Title

 Пáб $\chi \alpha \tau \tilde{v}$ X

Several algorithms set out by the arithmetician and land-surveyor Nicholas Artabasdos Rhabdas of Smyrna, at the request of diviner Demetrius Myrsiniotes, about indiction, the cycle of the Sun, the cycle of the Moon, its base, the finding of its days, the hours of its visibility, and further, about Meat-Fare, Passover, the finding of the day on which this occurs, the leap year, the sacred Easter of Christians, and the Apostles' Fast that occurs in Summer.

1

Introduction

As I know that the clarification of the things you have been seeking is something you, my bitterly longed for and dearest sir Demetrius, earnestly strives to learn on a rational basis, I tried, beginning from the bases on which the subject-matter rests, to give shape to a systematic exposition in order to lay down and to transmit to you the way of both finding and learning these things. Then, the subject-matter may seem particularly difficult since it is not yet familiar-for the beginners hardly feel hopeful for a successful accomplishment-still, it will become easily apprehensible for you thanks both to your eagerness and to my rigorous exposition, for eagerness enriched by teaching runs fast towards learning.

Comm. The introductory section is almost entirely drawn verbatim from Diophantus' Arithmetica. ${ }^{23}$ The same extract also opens the Letter to Tzavoukhes and, with the exception of the length of the portions excerpted, the Letter to Khatzykes. ${ }^{24}$ Apparently, Rhabdas considered using this quote in his grammatical Letter to Paul Artabasdos unsuitable. Nothing else is known about Demetrius Myrsiniotes (whose appellation $\theta \dot{u} \tau \eta \mathrm{~s}$ " "diviner" is perplexing); however, two Myrsiniotes are recorded as PLP, nr. 92694 and 92695.

2

 $\tau \varepsilon \alpha ̉ \rho \chi \eta ̀ v ~ \kappa \alpha i ̀ ~ \tau \eta ̀ v ~ \varepsilon ̇ \pi เ v \varepsilon ́ \mu \eta \sigma เ v . ~ \tau \eta ̀ v ~ \mu \varepsilon ̀ v ~ a ̉ \rho \chi \eta ̀ v ~ \delta ı o ́ \tau ı ~ \tau o v ̃ ~ \pi \alpha v \tau o ̀ ৎ ~ \kappa o ́ \sigma \mu о v ~ \kappa a \tau \alpha ̀ ~ \tau \eta ̀ v ~ \varepsilon i ̉ ৎ ~ \tau o ̀ v ~$

[^4]

 $\mu \varepsilon \theta$ ó $\delta \omega v$. кaì таṽта $\mu \varepsilon ̀ v ~ \pi \varepsilon \rho i ̀ ~ \tau \eta ̃ \varsigma ~ \varepsilon u ́ \rho \varepsilon ́ \sigma \varepsilon \omega \varsigma ~ \kappa \alpha i ̀ ~ \kappa \alpha \tau \alpha \lambda \eta ́ \psi \varepsilon \omega \varsigma ~ \tau \eta ̃ \varsigma ~ i ̉ v \delta i ́ \kappa \tau o v . ~$

Indiction and indiction cycle

And of course, one must first speak about the indiction: what is indiction, and what signifies its name, and from where it took its origin, and by whom. The name "indiction" is a Latin one, and signifies two things, "beginning" and "apportioning". <It signifies> "beginning" because the whole Cosmos when the Sun was entering Aries, ${ }^{25}$ this whole was created and brought in from non-being by God, best-artificer of the whole, which sign we do call "month of March", and we call each of these "month" from the name of the Moon-for the Moon is also called "month", and the months of the Sun have also got
${ }^{25}$ This marked anacoluthon and the long-winded sentence that includes it show that Rhabdas is partly improvising his Computus. We shall find other syntactic incongruities in the text.
their denominations from this-and because the Sun traverses one sign each month, or in a greater or even in a lesser interval, since it does not cut the signs into equal segments but into unequal ones because its circle is eccentric with respect to the ecliptic, whereas the Moon traverses the 12 signs each month, and for this reason (exactly as the divine and great prophet Moses hands down to us) the beginning of the year was retained to occur at the beginning of the month of March. It was so retained to be and said for 5460 years; however, in the fourth year of the reign of the emperor Augustus, the beginning of the year was shifted to the first of the month of September by so great an emperor, for the following reason: the annual tributes, taxes, dues, and regulations were gathered on this occasion, ${ }^{26}$ as is clear, after the harvest. Then, the Latins called the beginning of the year both "indiction" and "apportioning" because taxes and regulations on properties are gathered on such an occasion; <Augustus> decreed that the indiction should go up to fifteen years and thereafter take again its beginning, either because, after such a period, tax censuses are revised or because, after such a <period>, taxes are collected and again returned back to the ruler. Now then, indiction took its beginning in year 5460 .

Then, whenever you wish to know the present indiction, resolve out into 15 the years found from year 5460 up to the now-present year 6850 from the foundation of the world; and they are 1390. Then, say as follows: 15 <times> 90, 1350; 40 are also left out. And again, say: 15 <times> 2, 30; there also remain 10 for you.

And if you wish to find the indiction starting from the whole gathering of all the years from the beginning of the world (namely, 6850), resolve 6850 out into 15, and that which is found down from 15 turns out to be the present indiction. Say as follows: 15 <times> 400, 6000; 15 <times>50, 750; 15 <times> 6, 90; 10 as a remainder. And the cycle of the indiction is the $10^{\text {th }}$, as clarified above too.

I have also found another, more concise algorithm, which, for the purpose of finding, is most readily used by those who are insufficiently skilled in numbers, and which, of course, I did not hesitate to add to the present work too, and which is as follows. Keep only 50 from the 6850 years, and add 5 to these too, which, as is clear, also remain over from 6800 once all pentadecads are removed; and they yield 55 from these; consider how many times you can cast number 15 aside, and you will always find tree times, for thrice 15,45 , which once removed from 55, 10 are left out, which are also equal to those found above by means of the other algorithms. And these things about finding and apprehending the indiction.
${ }^{26}$ As O. Delouis suggested per litteras, these terms "désignent, ainsi que d’autres, les impôts de manière générique" and "relèvent plutôt de l’accumulation rhétorique". Accordingly, I have translated these four terms with four generic English terms of similar meaning. On the fiscal terminology in the Palaiologan period, see A. Kontogiannopoulou, "La fiscalité à Byzance sous les Paléologues ($13^{\mathrm{e}}-15^{\mathrm{e}}$ siècles)", Revue des Études Byzantines 67 (2009), 5-57.

Par. The meaning and origin of "indiction" ('iv δ ıктоৎ) is as follows: the meaning of indiction (a "Latin term") is "beginning" because, as the prophet Moses also attests, Creation took place when the Sun was entering Aries and the beginning of time was thereby set to this specific yearly calendar date (an explanation of the meaning and etymology of the noun $\mu \dot{\mu} v$, "month" but also "Moon", is also provided), and because the Sun traverses each sign of the zodiac in different times because of the eccentricity of its orbit, whereas each month the Moon traverses all 12 signs; the meaning of indiction is also "apportioning" (غ̇ $\pi \iota v \dot{\varepsilon} \mu \eta \sigma \iota \varsigma)$. A historical outline of indiction follows: it was introduced by Augustus in AM 5460, which was the fourth year of his reign, by shifting the beginning of the year (and hence of indiction) from the Spring equinox to September 1, when harvest season ends and annual taxes are accordingly collected. The designation "apportioning" derives from what has been explained. The indiction cycle lasts 15 years either because, after such a period, tax censuses are revised or because, in the same period, taxes are collected and returned to the ruler.

The algorithm for finding the indiction cycle year i of an assigned year y in the Byzantine world era is: ${ }^{27}$
$(y) \rightarrow y-5460 \rightarrow(y-5460) \bmod 15=i$.
A computation is carried out for current year AM $6850[=1341 / 2]$, and it yields $y=6850$ $\rightarrow i=10$.

By using directly the world era, the algorithm is:
$(y) \rightarrow y \bmod 15=i$.

[^5]A computation is carried out for current year AM 6850 [$=1341 / 2]$, and it yields $y=6850$ $\rightarrow i=10$.

A more concise and very easy algorithm, which Rhabdas claims to be his own discovery and which he does not hesitate to include in his Computus, is:

$$
(y) \rightarrow y-6800 \rightarrow(y-6800)+5 \rightarrow[(y-6800)+5] \bmod 15=i .
$$

This algorithm relies on the fact that $5 \equiv 6800(\bmod 15)$. A computation is carried out for current year AM 6850 [= 1341/2], and it yields $y=6850 \rightarrow i=10$.

Comm. The indiction is a 15 -year cycle introduced in the late Roman empire for taxation purposes. There are several regional variants of the indiction cycle, and its initial history is complex; ${ }^{28} \mathrm{AD} 312 / 3$ is year 1 of the most current indiction cycle. The indiction cycle and the Byzantine world era are synchronized: ${ }^{29}$ year 1 of the Byzantine world era is also year 1 of the indiction cycle; moreover, both the Byzantine civil year and the indiction year begin on September 1. Thus, computing the indiction cycle year starting from a year y of the Byzantine world era amounts to finding the remainder after subtracting 15 units from y as many times as possible; the related algorithm is the second given by Rhabdas. He also makes indiction to start at AM 5460; of course, since $5460 \equiv$ $0(\bmod 15)$, we should take this statement to mean that AM 5461 is indiction year 1 . That $5460 \equiv$ $0(\bmod 15)$ also proves that the first algorithm given by Rhandas is correct.

In the third algorithm, as well as in the algorithms for solar and lunar cycle years, the nearest end-of-century year is removed from a world era year before the modulo reduction is carried out. Since $6800 \equiv 5(\bmod 15), 6800 \equiv 24(\bmod 28)$, and $6800 \equiv 17(\bmod 19)$, the algorithms for the indiction, solar, and lunar cycles entail not only the shift $y \rightarrow y-6800$, but adding the above numbers as parameters to compensate for the shift. Below is a table of the values of i, s, and m for the end-of-century years that are relevant to Byzantine Computi ${ }^{30}$:
${ }^{28}$ A detailed study is by S. Bagnall, K.A. Worp, Chronological Systems of Byzantine Egypt, $2^{\text {nd }}$ ed., Leiden - Boston 2004; Grumel, La Chronologie (cit. n. 19), 192-206 provides a brief account and explains the regional variants. See also the account in Mosshammer, The Easter Computus (cit. n. 19), 20-24.
${ }^{29}$ An Era is a non-cyclic count of calendar years starting from a given year 1, called "epoch".
 tion of the world") is BC 5509 September 1, which falls on a Saturday; years are Julian years. On eras, see the synopsis in Grumel, La Chronologie (cit. n. 19), 207-226 and 279-296; see also O. Neugebauer, A History of Ancient Mathematical Astronomy, Berlin - Heidelberg - New York 1975, 1143 s.v., and especially 1064-1067 and 1074-1076 (with bibliography), and the dedicated sections in Neugebauer, Ethiopic Astronomy (cit. n. 19), and Neugebauer, Abu Shaker's (cit. n. 19).
${ }^{30}$ Other Computi in which end-of-century years are subtracted-despite his claim for originality, many of them precede Rhabdas' times-are Anonymus 892, sect. 7; Anonymus 1092A, sect. 1, and 1092B, sect. 1 (both for indiction only), edited in F. P. Karnthaler, "Die chronologischen Abhandlungen des Laurent. Gr. Plut. 57, Cod. 42. 154-162", Byzantinisch-neugriechische

	6200	6300	6400	6500	6600	6700	6800	6900
i	5	0	10	5	0	10	5	0
s	12	0	16	4	20	8	24	12
m	6	11	16	2	7	12	17	3

3

 $\pi \alpha \rho o ́ v \tau ı ~ \tau o v ̀ \varsigma ~ \sigma u v \tau о \mu i a ̨ ~ \chi \rho \omega \mu \varepsilon ́ v o v \varsigma$.
${ }^{\text {a }}$ lege ó ки́к入о,

Solar and lunar cycles

On the cycle of the Sun and of the Moon one must say in the following way. The cycle of the Sun begins on the first of the month of October, reaches to 28 years, and takes again its beginning. Then, we say what is the cycle of the Sun; and why the month of October is called "base" of the cycles of the Sun, and for what reason the cycles of the Sun are 28, and not more nor less, similarly, for what reason the month of January is also called "base" of the cycles of the Moon, and why the cycles of the Moon are 19, it is out of place to say now, for in the present <exposition> we aim at conciseness.

Comm. Solar cycles of equal length exhibit the same sequence of pairings between dates and weekdays. As Julian years model the tropical year of $365 \frac{1}{4}$ days (and therefore an intercalary day is added every fourth year, see sect. 12), the number of weekdays and 4 are prime to one another, and neither 365 or 366 are multiples of 7 , therefore the shortest solar cycle consists of $7 \times 4=28$ Julian years. Once an assigned sequence of calendar years is divided into consecutive

Jahrbücher 10 (1933), 1-64, at 5.1-3 and 8.136-138, respectively; Anonymus 1247, sects. 2, 6, 8, edited in O. Schissel, "Chronologischer Traktat des XII. Jahrhunderts", in Eic $\mu \nu \eta \mu \eta \nu \Sigma \pi$.
 Vat. Pal. gr. 367 (Diktyon 66099), ff. 85r-88r; Anonymus 1273, sect. 3, edited in edited in F. Buchegger, "Wiener griechische Chronologie von 1273", Byzantinisch-neugriechische Jahrbücher 11 (1934-35) 25-54, at 29.19-27; Matthew Blastares (dated 1335), edited in G. Rhalles, M. Potles,
 1350, sects. 1-3, in O. Schlachter, Wiener griechische Chronologie von 1350, Diss. Graz 1934, 5.36.14; Isaac Argyros' Computus (dated 1372), sects. 3 and 6, in PG XIX, 1284-1285 and 1292; Anonymus 1377, sects. 1-2, 4, in PG XIX, 1317 and 1321; Anonymus 1379, in PG XIX, 1329.
solar cycles, and thanks to the defining property of solar cycles, an algorithm able to determine the weekday of an assigned date within a solar cycle also calculates it for any year in the assigned sequence. Synchronizing solar cycles with the current era works out the same problem for any given calendar year. As is usual in Computi, Rhabdas uses кúк $\lambda o \varsigma$ to name both the 28-year solar "cycle" and a solar "cycle year" within a solar cycle.

The natural time interval associated with the motions of the Moon and of the Sun as seen from the Earth is the synodic month, which corresponds to the return of the Moon to the same position with respect to the Sun. The new Moon is traditionally taken as the boundary between two consecutive lunar months. A synodic month comprises 29 days and a fraction of a day that is very close to $1 / 2$. Hence, a synodic month of about $291 / 2$ days covers an interval of 30 days. The "age of the Moon" is the number of days elapsed since the immediately preceding new Moon. A "schematic lunar month" is the approximation of the synodic month to $291 / 2$ days, counted from one new Moon to the next and embedded in a calendar year. Such an embedding is usually put into effect by alternating lunar months of 30 or 29 days. ${ }^{31} \mathrm{~A}$ "lunar cycle" is any period after which the sequence of pairings between calendar dates and ages of the Moon repeats itself.

The 19-year lunar cycle comprises 19 calendar years of 365 days, which equal 6935 days; these are organized as a sequence of 228 alternating lunar months of 30 and 29 days ($=6726$ days) plus 7 "embolismic" ($\varepsilon \mu \beta$ ó $\lambda \iota \mu o \iota$) months of 30 days each ($=210$ days) occurring in specific years and resulting from the fact that 12 lunar months of $291 / 2$ days correspond to only 354 days. The 11 days needed to complete a calendar year of 365 days accumulate (the quantity accumulated at each lunar cycle year is called "epacts", see sect. 6) until they exceed 30 days; when this happens, an embolismic lunar month of 30 days is formed, and these days are subtracted from the accumulated epacts. In this case, a calendar year comprises 13 lunations, and the "lunar year" has 13 months. Accordingly, a 19-year lunar cycle comprises $228+7=235$ lunar months of 30 or 29 days. These 235 lunar months comprise 6936 days: the difference of 1 day between the 6935 days counted on the calendar and the 6936 days counted according to the age of the Moon is eliminated by inserting a saltus lunae-that is, by increasing the age of the Moon by one day at some point of its cycle: in Byzantine Computi, the saltus lunae is normally inserted towards the end of the $16^{\text {th }}$ lunar cycle year. ${ }^{32}$ A "lunar cycle year" is a calendar year whose beginning can be shifted with respect to the beginning of the civil (calendar) year. A 19-year cycle consists thus of 19 calendar years, 19 lunar cycle years, and 19 "lunar years" (the latter of variable length, as they can be either 12 -month or 13-month sequences); these three 19-"year" periods

[^6]overlap but differ from one another because different meanings of "year" are involved. In lunar computations, leap years are disregarded (see sect. 8).

In Byzantine Computi, the solar cycle, the lunar cycle and the reference era are synchronized: year 1 of the Byzantine world era is also year 1 of the solar and lunar cycles. For this reason, the reduction rules from world era years to solar and lunar cycle years are straightforward; ${ }^{33}$ the algorithms for these very rules are the first given by Rhabdas in sects. 4 and 5. This reduction is carried out by eliminating whole solar or lunar cycles from the total of world era years.

4

 $\pi \rho о \tau \varepsilon ́ \rho a ̣ \mu \ell \theta$ ó $\delta \omega$.
${ }^{a}$ lege $\rho \iota \beta$

Algorithms for finding the solar cycle year

Then, whenever you wish to know the cycle of the Sun, keep the years found from the foundation of the world, and divide these by 28, that is, cast 28 aside as many times as possible, and that which is found down from these is the cycle of the Sun. Then, we remove 6850 by 28 as follows, and we say: 28 <times> 200, 5600; 28 <times> 40, 1120; 28 <times>4,112; there also remain 18 as a remainder. And the cycle of the Sun is the $18^{\text {th }}$.

Further, to find the cycle of the Sun by means of the other, more concise, algorithm too, do as follows. Keep, as said, that which is found down from 6800 years, that is, 50, and add 24 to these too, which, as is clear, are also left out from 6800 once they are removed by 28 , and they yield 74 as a whole; remove 28 as many times as you can from
${ }^{33}$ Synchronization is not exact since, as seen in sects. 2 and 3, all these years begin on different dates: therefore, segments of two consecutive solar or lunar cycle years belong to one and the same calendar year. However, Passover, Easter, and most movable feasts of the Christian calendar fall in the "safe" time interval bounded by January 1 and August 31.
these, and you can always cast this aside twice; 18 are also left out, which are also equal to <those resulting with> the previous algorithm.

Par. The algorithm for finding the solar cycle year s of an assigned year y in the Byzantine era is:
$(y) \rightarrow y \bmod 28=s$.
A computation is carried out for current year AM 6850 [$=1341 / 2$], and it yields $y=6850$ $\rightarrow s=18$.

A more concise algorithm for finding the solar cycle year is:
$(y) \rightarrow y-6800 \rightarrow(y-6800)+24 \rightarrow[(y-6800)+24] \bmod 28=s$.
This algorithm relies on the fact that $24 \equiv 6800(\bmod 28)$. A computation is carried out for current year AM $6850[=1341 / 2]$, and it yields $y=6850 \rightarrow s=18$.

5

The lunar cycle, and algorithms for finding the lunar cycle year
The cycle of the Moon begins on the first of the month of January, and reaches to 19 years, and begins again first. Then, whenever you wish to know the cycle of this, keep the years from the foundation of the world, which are 6850 to-day, and resolve these out into 19, and that which is found down from 19 is the cycle of the Moon. Then, remove them as follows, and say: 19 <times> 300, 5700; 19 <times> 60, 1140; then, there also remain 10 as a remainder. And the cycle of the Moon is the $10^{\text {th }}$.

Further, to find the cycle of this with the concise algorithm too, do as follows. Keep, as said above to you, the small parts of the years, that is, 50 , and add 17 to these too-for these and only these are left out from 6800 once they are divided by 19 , which we also
regard quite as a root and base of sorts-together they yield 67; remove these by 19 , and say: thrice 19, 57; 10 are also left out, which are also equal to <those resulting with> the previous algorithm.

Par. The lunar cycle begins on January 1 and lasts 19 years. The algorithm for finding the lunar cycle year m of an assigned year y in the Byzantine era is:
$(y) \rightarrow y \bmod 19=m$.
A computation is carried out for current year AM 6850 [$=1341 / 2$], and it yields $y=6850$ $\rightarrow m=10$.

A concise algorithm for finding the lunar cycle year (the quantity $y-6800$ is called "the

$(y) \rightarrow y-6800 \rightarrow(y-6800)+17 \rightarrow[(y-6800)+17] \bmod 19=m$.
This algorithm relies on the fact that $17 \equiv 6800(\bmod 19)$. A computation is carried out for current year AM $6850[=1341 / 2]$, and it yields $y=6850 \rightarrow m=10$.

6

 $\theta \varepsilon \mu$ в́入ıoऽ.

An algorithm for finding the base of the Moon

The base of this [scil. the Moon] is taken as follows. Undecuple the cycle of the Moon what<ever> it is, and add 3, which they call dark <days> because the luminaries have come to be in the fourth day, to the number resulting from the multiplication too, and remove how many thirties you find from it, and that which is left down from 30 turns out to be the base of the Moon.

For example, in the present year 6850, the cycle of the Moon has been found to be the tenth, and we say that eleven times 10,110 ; we also add 3 to these; and together they yield 113, from which we remove 30 thrice; and 23 are left out. Then, we say that the now-present base of the Moon is also the twenty-third.

Par. The algorithm for finding the base $\left(\theta \varepsilon \mu \dot{\varepsilon} \lambda_{\mathrm{l}} \mathrm{o} \varsigma\right)$ of the Moon b_{m} at lunar cycle year m is:

$$
(m) \rightarrow 11 m \rightarrow 11 m+3 \rightarrow(11 m+3) \bmod 30=b_{m} .
$$

The additive parameter 3 (the so-called "dark <days>" [á $\varphi \dot{\omega} \tau \iota \sigma \tau o l]$) comes from the fact that the two luminaries came to be on the fourth day of Creation. A computation is carried out for current year AM 6850 [= 1341/2], and it yields $m=10 \rightarrow b_{m}=23$.

Comm. Each lunar year (= 354 days) is 11 days shorter than a 365 -day calendar year; this difference accumulates. The lunar "epacts" (غ̇̇aктаí, litt. the "<days> brought upon") are the difference that is accumulated at an assigned lunar cycle year within a 19 -year lunar cycle (see sect. 8). ${ }^{34}$ Whenever this cumulative difference is greater than 30 days, these 30 days make an "embolismic" month and are thereby subtracted from the epacts. In a lunar cycle that is synchronized with January 1, the epacts coincide with the age of the Moon on December 31. For this reason, a "base" of the Moon b_{m} was introduced such that $b_{m}=$ epacts +1 , which is but the age of the Moon on January 1. A base adapted to the features of some specific algorithms and defined by $b_{m}=$ epacts +3 , was also introduced: this is Rhabdas' base. ${ }^{35}$ As I shall explain (see sect. 7), he should, in fact, have used the "epacts + 1" base. Since, in the Byzantine 19-year cycle, the first lunar cycle year has 11 epacts, Rhabdas' bases, keyed to lunar cycle years, are as in the following table (note the absence of the saltus lunae between cycles 16 and 17, and see sect. 10):

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
b_{m}	14	25	6	17	28	9	20	1	12	23	4	15	26	7	18	29	10	21	2

7

${ }^{34}$ For lunar epacts in Byzantine Computi, see the early and clear expositions by George Presbyter (dated 638/9), sect. 2, in F. Diekamp, "Der Mönch und Presbyter Georgios, ein unbekannter Schriftsteller des 7. Jahrhunderts", Byzantinische Zeitschrift 9 (1900), 14-51, at 25, and by Maximus the Confessor, Brevis Enarratio Christiani Paschatis (dated 640/1), sect. I.7, in PG XIX, 1217-1279, at 1223; see also such an early Computus as Anonymus 892, sect. 14.
${ }^{35}$ For this "base", see, for instance, Anonymus 1247, sect. 20, in Schissel, "Chronologischer" (cit. n. 30); the last section of Anonymus 1256; Matthew Blastares, in Rhalles, Potles, Dúvtaүua (cit. n. 30), 414-415 and 416-417; Isaac Argyros, sect. 7, in PG XIX, 1279-1316, at 1293; Anonymus 1377, sect. 5, in PG XIX, 1316-1329, at 1321; Anonymus 1379 or Pseudo-Andreas, in PG XIX, 13291334, at 1334. See also the list of epacts and bases in Grumel, La Chronologie (cit. n. 19), 54-55.

The age of the Moon on an assigned date

After you have found the base of the Moon, and you also want to find the age of the Moon from conjunction or from full Moon, that is, from new Moon and blooming, keep the found base, and begin from the month of January, and successively add all of the bygone months to such a base, <namely,> all the days of the months up to and including the date of the month in which you carry out your search, and gathering all of them and putting them together into a single quantity remove how many lunar months you find from them - the quantity of a lunar month are $291 / 2$ days and 3 minutes, for the astronomer Ptolemy appears to hand so-and-so down to us-and consider that those which are found down from $291 / 2$ are the exact age of the Moon.

Par. The algorithm for finding the age of the Moon $a\left(x_{X}\right)$ on day x in month X in a given lunar cycle year m, counting from the day of the new Moon ($\sigma v v_{0} \delta o \varsigma$, litt. "conjunction", veo$\mu \eta v i \alpha)$ or of the full Moon ($\pi \alpha v \sigma \dot{\varepsilon} \lambda \eta \nu 0 \varsigma, \dot{\alpha} \pi o ́ \chi v \sigma ı$, , litt. "blooming"), with $n_{k}=$ number of days in month k, is the following:

$$
\left(b_{m}, x, X\right) \rightarrow b_{m}+\sum_{k=J}^{X-1} n_{k}+x \rightarrow\left(b_{m}+\sum_{k=J}^{X-1} n_{k}+x\right) \bmod 291 / \frac{1}{2}=a\left(x_{X}\right) .
$$

The length of the lunar month is of $291 / 2$ days and 3 minutes according to Ptolemy, and this is exactly what should be subtracted in the modulo reduction.

Comm. The age of the Moon on day x in month X is found by adding its age on a date taken as epoch to the elapsed days counted from that date, and by then removing whole lunar months. Since Rhabdas begins counting from January 1 , his use of the base $b_{m}=$ epacts +3 is incorrect. The counting of the days elapsed from epoch is carried out by grouping the days of the elapsed months (addendum $\sum_{k=J}^{X-1} n_{k}$), to which the days x counted in the last month X must be added. The final reduction modulo $29 \frac{1}{2}$ removes whole lunar months. ${ }^{36}$ Rhabdas' statement about the

[^7]3 minutes is unclear, for the mean synodic month according to Almagest IV. 2 exceeds $291 / 2$ days by a little less than 2 minutes (for it is $29 ; 31,50,8,9,24$ days) and a $\lambda \varepsilon \pi \tau \circ \dot{v}$ according to the calculations given in the next section (but unlike those found in sect. 9) is $1 / 60$ a day.

Alternative algorithms for the age of the Moon at an assigned date

However, both in order to avoid confusion and for an easy apprehension, some remove thirties, and afterwards they add half a day for each single thirty to the number left out. Others remove sixties, whenever the number proceeds to a greater amount, and they add a day for each single sixty to the number left out because two lunar months amount to 59 days. And this is the general and exact algorithm.

Par. An alternative, clear and easy-to-understand algorithm is:

$$
\left(b_{m}, x, X\right) \rightarrow b_{m}+\sum_{k=J}^{X-1} n_{k}+x \rightarrow\left(b_{m}+\sum_{k=J}^{X-1} n_{k}+x\right) \bmod 30+1 / 2 \llbracket\left(b_{m}+\sum_{k=J}^{X-1} n_{k}+x\right) / 30 \rrbracket=a_{m}\left(x_{X}\right) .
$$

The last addendum reintegrates $1 / 2$ a day, of which one falls short when reducing modulo 30 instead of modulo $291 / 2$.

An alternative algorithm to be used when the addition yields a large sum is:
$\left(b_{m}, x, X\right) \rightarrow b_{m}+\sum_{k=J}^{X-1} n_{k}+x \rightarrow\left(b_{m}+\sum_{k=J}^{X-1} n_{k}+x\right) \bmod 60+\llbracket\left(b_{m}+\sum_{k=J}^{X-1} n_{k}+x\right) / 60 \rrbracket=a_{m}\left(x_{X}\right)$.
The last addendum reintegrates 1 day, of which one falls short when reducing modulo 60 , since 2 lunar months last 59 days.

Comm. These algorithms, whose rationale is explained by Rhabdas in detail, are also given in Anonymus 1183, sect. 9. Lunar age algorithms usually simplify matters and reduce modulo 30 without reintegrating a day or a fraction of it. ${ }^{37}$ Algorithms that reduce modulo 60 can also be found, especially in connection with the approach advocated by the so-called $\pi \varepsilon v \tau \alpha \pi \lambda 0 u ̃ \nu \tau \varepsilon \varsigma$ каì $\dot{\xi} \alpha \pi \lambda о \tilde{v} \tau \tau \varsigma{ }^{38}$
chronologie appliquée de Michel Psellos", Byzantion 4 (1927-28), 197-236; 5 (1929-30), 229-286: II, 237.1-11; Anonymus 1183, sects. 9 and 10, edited in F. Acerbi, "Struttura e concezione del vademecum computazionale Par. gr. 1670", Segno e Testo 19 (2021), 167-255; Anonymus 1377, sect. 6, in PG XIX, 1323.
${ }^{37}$ See the compilation in Maximus the Confessor, sect. III.8, in PG XIX, 1268-1269; Psellos, sect. I.8, in Redl, "La chronologie" (cit. n. 36), I, 221-223; Anonymus 1092A, sect. 10, in Karnthaler, "Die chronologischen Abhandlungen" (cit. n. 30), 7.109-113; Anonymus 1247, sects. 21 and 25, in Schissel, "Chronologischer" (cit. n. 30), 109 and 110; Isaac Argyros, in PG XIX, 1294-1296.
${ }^{38}$ For the latter, see Maximus the Confessor, sects. I.11-12, 16, in PG XIX, 1228-1229, 1233, and the entire chapter II, in PG XIX, 1252-1264; Anonymus 1079, sect. 5, in A. Mentz, Beiträge zur Osterfestberechnung bei den Byzantinern, Diss. Königsberg 1906, 76-100, at 80-84, and also the discussion at 51-66; Anonymus 892, sect. 8; Anonymus 1092A, sect. 3 (this Computus is a copy of Anoпутия 892). The latter defines the algorithm as χ артоидарько́ "archive-keeper-style":

 $\kappa \rho \alpha \tau \tilde{\omega} \mu \varepsilon \nu \tau \alpha ̀ \kappa \alpha \tau \alpha \lambda \varepsilon เ \varphi \theta \varepsilon ́ v \tau \alpha$.

 Фєv

Karnthaler, "Die chronologischen Abhandlungen" (cit. n. 30), 5.28. Anonymus 1183, sect. 9, sets out a modulo 60 algorithm similar to Rhabdas'.

${ }^{a} \mu \nu \nu \tilde{\omega} \nu o$ [sp. 2 litt.] $\dot{\eta} \mu \varepsilon \nu^{v v}$ scr. m. $2{ }^{\text {b }}$ scripsi : legi nequit fort. scripsit $\varepsilon i^{\mathrm{c}}$ lege $\varphi \varepsilon \gamma \gamma \alpha \rho i \omega \nu{ }^{d}$ lege $\dot{\omega} \rho \tilde{\omega} \nu \mathrm{cf}$. tit.

The epacts of the Moon

Others, for the sake of both conciseness and easiness together, removing a lunar month from each solar month hold the days that remain over from each month, which they really also call "epacts". Then, one day and a half remain over from the months of the Sun that have 31 days, and one half only from those that have 30 ; then, 11 days are gathered from the 12 months, adding which year by year to the present base too we find the subsequent base, if this does not overstep 30; if indeed it oversteps 30, let us keep what is left out after removing it.

Someone might legitimately raise the following objection, when hearing that the months of the Sun are 12 and 7 of them have 31 days each: how on earth the epacts are not 13 but 11 ? And we reply to this that February takes the one day and a half that remains over from the lunar month in the month of January because this [scil. February] has 28 days and it is not equal to a lunar month, whence the 11 <epacts> arise from ten months only. Whenever the year happens to be a leap year, then the epacts of the months do not come to be eleven but 12 because February has then 29 days, which <extra> day, as is clear, it receives from the addition of the leap day, for February then borrows only a half a day from January, and by necessity one day of January remains. Then, the epacts are gathered from 10 months, whenever the year does not happen to be a leap year, as follows. March $1 / \frac{1}{2}$ because it has 31 days, April one half because it has 30, and in succession May $1 \frac{1}{2}$, June one half, July $1 \frac{1}{2}$, August $1 \frac{1}{2}$, September $1 / 2$, October $1 \frac{1}{2}$, November one half, December $1 \frac{1}{2}$; together 11 . Whenever, as said, the year does happen to be a leap year, then one day of January also remains over, and <the epacts> become 12, for February receives half of this, as clarified. And go carefully through these <arguments>, in order for you to get these things exactly and on a rational basis.

Then, for example, let there be a search for us to find the age of the Moon on the ninth of the month of March. And according to the general algorithm we say that base 23, January 31, February 28, and March 9; together they yield 91; I remove from these three thirties (or one sixty and a half, for it is the same), and one <day> is left out for me; I also add to it the three halves of a day that remain over from the three thirties, which also make one day and a half; and they yield, with the previous single $<$ day $>, 21 / 2$ days. And I say that, on the whole $9^{\text {th }}$ day of the month of March, the age of the Moon is very nearly 2 <days> and a third, since I also remove 9 minutes on behalf of the 3 lunar months.

Likewise, one must also exemplify this by means of the other algorithm too, and let there be a search for us to find what age of the Moon should be found on the $14^{\text {th }}$ of the forthcoming September of the $11^{\text {th }}$ indiction, and we say as follows. Base 23; January and February are equal <to two lunar months> and do not contribute anything; and I begin from March, and I say: March $1 \frac{1}{2}$, April $1 / 2$, May $1 \frac{1}{2}$, June $1 / 2$, July $1 \frac{1}{2}$, August $1 \frac{1}{2}$, and September 14; together they yield 44 ; I remove $29 \frac{1}{2}$ and $4 \frac{1}{2}$ minutes from these; and 14 and $25 \frac{1}{2}$ minutes are left out, so that this is very nearly a full Moon. Then, on the given September 14, the age of the Moon is found, by means of this algorithm too, $14 / 1 /{ }_{3} / 12 / 120$ <days>, that is, 14 days and $25 \frac{1}{2}$ minutes. So much for you about the age of the Moon too. Consequently, it is next to be also said about the hours of its visibility, namely, how many hours it shines and carries its torch alight on every night.

Par. For the sake of conciseness and easiness, some people use the epacts of the Moon, which are the number of days of excess of a calendar month over a lunar month of $29 \frac{1}{2}$ days. This excess is $1 \frac{1}{2}$ day for the months that have 31 days, $1 / 2$ a day for the months that have 30 days. In this way, 11 epacts cumulate every year. What follows is the algorithm for computing the base of the Moon of lunar cycle year $m+1$ once the base of year m is known:

$$
\left(b_{m}\right) \rightarrow b_{m}+11 \rightarrow\left(b_{m}+11\right) \bmod 30=b_{m+1} .
$$

A difficulty (ả π ор 31 days, why are the yearly epacts 11 and not 13 ? Because February has 28 days, and the $1 \frac{1}{2}$ day needed to complete a whole lunar month amounts exactly to the same excess in January, so that the yearly epacts result from adding the excess of the remaining 10 months. In leap years, the epacts are 12 and not 11 because February has 29 days. A list of the lunar epacts of each month from March to December is given; together they yield 11.

A computation of the age of the Moon is carried out by means of the second and of the third algorithm given in sect. 7, on March 9 of the current year, and it yields base of the Moon $b_{m}=23 \rightarrow$ age of the Moon $a_{m}\left(x_{X}\right)=2 \frac{1}{2}$ days, from which Rhabdas subtracts 9 minutes because
of the intervening 3 lunar months. It yields very nearly $2 \frac{1}{3}$ days (for $9 / 60$ a day are very nearly $1 / 6$ a day).

A second computation of the age of the Moon is carried out by means of first algorithm given in sect. 7, on September 14 of the following calendar year, and it yields $i=11, b_{m}=23^{39}$ $\rightarrow a_{m}\left(x_{X}\right)=$ (by subtracting $291 / 2$ days and $4 \frac{1}{2}$ minutes from the sum of base, months, and days, which amounts to 44 days) $=14$ days and $25^{1 / 2}$ minutes $=14^{1} 3^{1 / 12} \frac{1}{120}$ days.

Comm. The last equality is valid because $1 / \frac{1}{3} 12 \frac{1}{120}=51 / 120$ a day, that is, $51 / 2=25 \frac{1}{2}$ minutes. Rhabdas' statement that in leap years the epacts are 12 and not 11 because February has 29 days is erroneous: no elements pertaining to lunar computations take leap years into account (in fact, they simply cannot). ${ }^{40}$

9

 $\mu \alpha \rho \mu \alpha i \rho \varepsilon \iota \nu \tau \grave{\nu} \nu \mu \eta ̃ \nu เ v$.

[^8]

 $\kappa \alpha \iota \delta \varepsilon \kappa \alpha ́ \delta a ~ v o ́ \varepsilon ı ~ ั ̈ \rho a v ~ \mu i ́ a v . ~$

Duration of visibility of the waxing and waning Moon at an assigned age of the Moon

Then, one must know that, from conjunction up to full Moon, its light increases by four minutes per each nychthemeron, and again from full Moon up to conjunction, it decreases by four minutes, which minutes are four fifths an hour, viz. the $2 / 3_{10} 1 / 30$ part of an hour, in such a way that five minutes cast upon an hour. Then, whenever you want to recognize and to learn how many hours the Moon shines each night, quadruple its age, and divide the resulting number by 5 , and how many pentads you cast aside, so many hours declare the Moon shines.

For instance, the age of the Moon happened to be found of 11 days, and let us seek to learn how many <hours> the Moon should shine on that night, and according to the expounded algorithm we say that four times 11,44 ; one must divide these by 5 , and I say: five times 9, 45 apart from one fifth. Then, I say that, on that night, <the Moon> should shine 9 hours apart from 1 fifth, which is $1 / 5$, or 8 hours and 4 minutes, that is, $2 / 3^{1 / 10} 1 / 30$ one hour.

Par. The Moon waxes and wanes for 4 minutes per day, where a minute ($\lambda \varepsilon \pi \tau o \dot{v}$) is in this case $1 / 5$ an hour (that is, it is $1 / 2$ of the minutes used in the previous sections); these 4 minutes amount to $2 / 3 / 10^{1 / 30}$ an hour. The algorithm for computing the duration of visibility v_{a} of the waxing and waning Moon at age of the Moon a (Rhabdas refers only to the time period from new Moon to full Moon, left unshaded below) is:

```
(a) \(\rightarrow\)
\(\mid 1 \leq a \leq 15,4 a \rightarrow 4 a / 5=v_{a}\).
\(\mid 16 \leq a, v_{a}=v_{30-a}\).
```

A computation is carried out for a Moon aged 11 days: the Moon shines 9 hours minus 1 minute, that is, 8 hours 4 minutes, which are $82 / 3 / 10^{1 / 30}$ hours.

Comm. The first equality stated by Rhabdas is valid because $2 / 3^{1 / 10} 1 / 30=24 / 30=4 / 5$. The duration of visibility of the waxing (waning) Moon is supposed to increase (decrease) stepwise every day of a lunar month. ${ }^{41}$ Accordingly, the visibility of the Moon within a cycle is approximated by a triangular step function. As the full Moon is supposed to "shine" for the length of the interval between sunset and moonset, the step is $4 / 5$ an hour, which is the scaling factor between 12 hours (the length of any night in seasonal hours) and 15 days.

Seasonal and equinoctial hours

But this algorithm will prove true only on the occasion of the equinox-if, on the same footing, the hours are conceived as seasonal all time along, viz. both the night and the day are also conceived of 12 hours and we conceive some <hours> greater and some lesser, but if the hours are reckoned as equinoctial on any occasion, that is, to be of equal length both the nocturnal and the diurnal hours, as when, grant that, the longest day is of 15 hours and the shortest night is of 9 hours, and inversely the longest night is of 15 hours and the shortest day is of 9 hours-this algorithm will not always prove true, but we shall always need another one. God willing, this <algorithm> from my own will also be expounded, and we shall not fear any rebutter.

It is as follows. Always multiply the age of the Moon that has been found by the <length in equinoctial> hours of that night on the occasion on which the search occurs, and divide the gathered number by the times of the equinoctial hour, which are 15 , and conceive one hour for each pentadecad.

For example, let a search have occurred for us to find, in the month of January (on which occasion the night has 14 hours), how many hours should the Moon shine, its age

[^9]being twelve days. And I say according to the expounded algorithm: twelve times 14, 168 ; these, once divided by 15 , make 11 hours and $1 / 5$. And I say that, on that night, the Moon shines 11 hours and $1 / 5$; with the other algorithm expounded above, on the contrary, $91 / 2$ hours and a tenth are found.

Further, one must also exemplify on the occasion on which the night has 9 hours, that is, in the month of June, how many hours should the Moon shine, its age being found fourteen days. And I also say anew according to the given algorithm: I multiply the 14 days of the Moon by the 9 hours of the night; and they yield 126, for nine times 14 make 126; then, I can remove 15 from these eight times; there also remain 6 , which are the part two-fifths of 15 , that is, the part a-third and $1 / 15$ of an hour. And I declare that, on that night, the Moon shines $8 \frac{1}{3} \frac{1}{15}$ equinoctial hours. So much for you about the algorithms for the Moon too.

Par. This computation employs seasonal hours. The difference between seasonal hours and equinoctial hours is clarified. An algorithm that employs equinoctial hours, where $N_{X}=$ length in equinoctial hours of the night in month X, is as follows (at equinox, $N_{X}=12$, and this formula and the one given above coincide):

$$
(a, X) \rightarrow a N_{X} \rightarrow a N_{X} / 15=v_{a} .
$$

A computation carried out for a Moon aged 12 days in January (the night lasts 14 equinoctial hours) demonstrates that the Moon shines $11 \frac{1}{5}$ hours, whereas the other algorithm (and thus reckoning by seasonal hours) gives $91 / \frac{1}{2}$ hours. A computation is carried out for a Moon aged 14 days in June (the night lasts 9 equinoctial hours): the Moon shines $8 \frac{1}{3} \frac{1}{15}$ hours.

Comm. A day is divided into 24 hours (or into 12 double-hours). These can be evenly distributed between the two complementary portions of a day determined by sunrise and sunset, in which case they are of variable length and are called "seasonal" (каı $\iota к \alpha i) ~ h o u r s . ~ A l t e r n a t i v e l y, ~ t h e ~$ hours can be of fixed length, namely, $1 / 24$ a nychthemeron; in this case, they are called "equinoctial" (ion $\left.\mu \varepsilon \rho \stackrel{v}{ }{ }^{\prime}\right)$ hours, because this is the value of a seasonal hour at the equinoxes. The length of the night in equinoctial hours is traditionally approximated, at the latitude of Constantinople, by a linearly increasing step function ranging from 12 hours (in March and September) to 15 hours (in December) and back to 9 hours (in June).

10

 $\mu \kappa$ кòv Фáбка катà тŋ̀v к δ тоṽ Maptiov $\mu \eta$ vós.
${ }^{a}$ e corr. ${ }^{\text {aju }}$ тoũ ${ }^{\text {toũ }}$

Passover

Now one must also speak about Passover, namely, the one of the Jews, which you will find as follows. Undecuple the cycle of the Moon what<ever> it is, from the first one up to and including the nineteenth one; then add 6, which they call "of the eras", that is, of the bygone six thousands of years, to such a multiplication too-however, one must add these only in 15 cycles of the Moon, namely, from the $1^{\text {st }}$ cycle of the Moon up to the sixteenth; in the remaining four cycles, viz. in the $16^{\text {th }}, 17^{\text {th }}, 18^{\text {th }}$, and $19^{\text {th }}$ cycle, add 7 instead of 6 -and putting all together remove as many thirties as you find from them, and keep that which is left down from them, and cast upon these, from the beginning of the month of March, as many days as you need for filling 50 days; if, however, the whole March is not enough, raise the remaining <days> from April too, and wherever the number of the 50 days happens to be filled first, whether in March or in April, say that Passover also occurs there.

For example, let a search by some people have occurred for us to find Passover in the now-present year 6850, and we do as follows according to the algorithm I have given, and we say: on the present occasion, the cycle of the Moon has been found to be the $10^{\text {th }}$, and we measure it eleven times; and it yields number 110 ; we also add 6 to these; and they yield 116; I remove three thirties from them; 26 are also left out; then, I need 24 days for filling 50 days, which I also take from March. Then, I say that Passover has been found on the $24^{\text {th }}$ of the month of March.

Par. The algorithm for finding the date p_{m} of Passover (七ò vouıкòv $\left.\Phi \alpha \dot{\alpha} \sigma \kappa \alpha, \Phi \alpha \sigma \kappa \alpha \dot{\lambda} \lambda \iota v\right)$ at lunar cycle year m is (see below for an explanation of the shading):

$$
\begin{aligned}
& (m) \rightarrow 11 m \rightarrow \\
& \mid m<16,11 m+6 \rightarrow(11 m+6) \bmod 30 \rightarrow 50-[(11 m+6) \bmod 30]-: 1_{M}=p_{m} . \\
& \mid 16 \leq m \leq 19,11 m+7 \rightarrow(11 m+7) \bmod 30 \rightarrow 50-[(11 m+7) \bmod 30]-: 1_{M}=p_{m} .
\end{aligned}
$$

The 6 units to be added to 11 m are the "epacts of the eras" ($\dot{\varepsilon} \pi \alpha \kappa \tau \alpha i ̀ \tau \tilde{\omega} v \alpha i \omega v \omega v$), that is, of the 6 whole millennia elapsed since Creation. The counting of the days begins on March 1 but it might end in April. A computation is carried out for current year AM 6850 [$=1342$], and it yields $m=10 \rightarrow p_{m}=24_{M}$.

Comm. The first branch of the algorithm can be described as follows: multiply the lunar cycle year m by 11, add 6 units, reduce modulo 30, subtract the result from 50 and count as many days as the remainder from March 1: the resulting day is the date of Passover; this day falls in April if the remainder is greater than 31. This widespread algorithm is elsewhere called "notarial" (voтарıкŋ). ${ }^{42}$ The addendum $11 m$ is the age of the Moon at the end of lunar cycle year $m-1(\bmod 19)$, that is, it is its epacts. This algorithm simplifies the fundamental algorithm expounded in early sources such as Heraclius and George Presbyter ${ }^{43}$ and which is actually a pretty straightforward adaptation to the Byzantine era of the algorithm adopted in the early Alexandrian Church. Heraclius' and George's algorithm has by far more complex branching conditions and prescribes subtracting from 44, not from 50 (44 is the number of days nearest to 1 and a half lunar month, as $291 / 2+14 \frac{1}{2} / \frac{1}{4}=44^{1} / 4$. The said simplification of these early algorithms was carried out by writing 44 as the result of $50-6$, with the parameter 50 lying outside the modulo 30 reduction and the parameter 6 lying inside it: this rewriting allowed setting a branching condition much more transparent than the condition in Heraclius' and George's algorithm. This can be so explained: counting 50 days starting on March 1 one gets to April 19, which is the upper term for Passover (see sect. 13), hence no counting from April 1 is required
${ }^{42}$ By Anonymus 1079, sect. 5, in Mentz, "Beiträge" (cit. n. 38), 98. Other occurrences of this algorithm are in Anonymus 892, sect. 12; Anonymus 1092A, sect. 4, and 1092B, sect. 6, in Karnthaler, "Die chronologischen Abhandlungen" (cit. n. 30), 5.40-6.47 and 9.191-10.198, respectively; Anonymus 1079, sect. 5, in Mentz, "Beiträge" (cit. n. 38), 100; Anonymus 1183, sect. 6; Anonymus 1247, sect. 3, in Schissel, "Chronologischer" (cit. n. 30), 106; Anonymus 1256, sect. 6; Matthew Blastares, in Rhalles, Potles, इúv $\tau \alpha \not \mu \alpha$ (cit. n. 30), 416; Anonymus 1377, sect. 5, in PG XIX, 1328; Anonymus 1379, in PG XIX, 1329.
${ }^{43}$ See H. Usener, "De Stephano Alexandrino", in Idem, Kleine Schriften, III, Leipzig Berlin 1914, 311-317, sect. 30; Diekamp, "Der Mönch" (cit. n. 34), sect. 4 on 30-31, and the discussion in Acerbi, "Byzantine Easter Computi" (cit. n. 19). See also the analyses in A. Tihon, "Le calcul de la date de Pâques de Stéphanos-Héraclius", in B. Janssens, B. Roosen, P. Van Deun (eds.), Philomathestatos. Studies in Greek and Byzantine Texts Presented to Jacques Noret for his Sixty-Fifth Birthday (Orientalia Lovaniensia Analecta 137), Leuven 2004, 625-646 (Heraclius), and J. Lempire, "Le calcul de la date de Pâques dans les traités de S. Maxime le Confesseur et de Georges, moine et prêtre", Byzantion 77 (2007), 267-304 (George).
for large epacts, contrary to what is done in Heraclius' and George's algorithm. The 6 units to be added to $11 m$ are called, in Rhabdas' work as well as in other Computi, ${ }^{44}$ "epacts of the bygone eras" (غ̇лактаì $\tau \tilde{\omega} \nu \alpha i \omega \omega \nu \omega v \pi \alpha \rho \varepsilon \lambda \theta o ́ v \tau \omega \nu$), which correspond to the 6 whole millennia elapsed since Creation: this is the basic mnemonic trick in this computation of Passover. In the second branch of the algorithm, the additional unit to be added to 11 m in the cycle years from 17 to 19 (and thus 7 units are added instead of 6) is the saltus lunae. Therefore, Rhabdas mistakenly locates the lunar cycle year starting from which 7 units must be added (his formulation is unambiguous): contrary to what he claims, in lunar cycle 16, 6 units must still be added. As usual, whole lunar months are removed by reducing modulo 30 . Unnecessary complications would arise from reducing modulo $291 / 2$; moreover, one would not let Easter coincide with Passover and reducing modulo 30 instead of modulo $291 / 2$ shifts forward, and most conveniently, the schematic date of the computed Passover.

11

 тои̃ $\mathfrak{\eta} \mu \varepsilon \rho о \varepsilon \cup \rho \varepsilon \sigma$ íov ov̋т $\omega \varsigma$.

[^10]

"Iva $\delta \varepsilon ̀ ~ \kappa \alpha i ̀ ~ \varepsilon ́ \pi i ̀ ~ u ́ \pi o \delta \varepsilon i \gamma \mu a \tau o \varsigma ~ \sigma \alpha \varphi \varepsilon ́ \sigma \tau \varepsilon \rho o v ~ \gamma \varepsilon ́ v \eta \tau \alpha ı ~ \tau o ̀ ~ \lambda \varepsilon \gamma o ́ \mu \varepsilon v o v, ~ \varepsilon u ́ \rho \varepsilon ́ \theta \eta ~ \tau n ̃ ~ \kappa \delta ~ \tau о v ̃ ~$

${ }^{\text {a }}$ lege $\tilde{\tilde{\varphi}}$

The weekday of an assigned date; Easter

I just need to learn the day on which Passover should also occur, so that I could also find our sacred holy Easter of the believers from it, and I find this by means of the day-finding algorithm, as follows.

Keep the cycle of the Sun what<ever> it is, and add to this the fourths cast upon it, which we also call "leap days", and thereafter begin taking, from the beginning of the month of October <and> from each single month among the bygone ones, 3 days from the months that have 31 days, 2 days from those that have $30<$ days $>$, and gathering all of them together add to them the days of that month in which you do your search too, and uniting them together remove all weeks from them, and that which is found down from the 7s, if one <day> is left out, this is Sunday, if two, it is Monday, if 3, it is Tuesday, and similarly in succession up to 7 .

For instance, let there be for us to find what weekday is the $24^{\text {th }}$ of the month of March (on which Passover also falls), and we say as follows. Eighteenth cycle of the Sun, four epacts <arising> from the leap years; of October, 3-for it has 31 <days>-of November, 2-for it has 30-of December, 3, of January, 3, and of March, 24; together 57 days, from which I remove 8 weeks; one <day> is also left out, which is Palm Sunday; and the other, forthcoming Sunday is the bright day of the resurrection of our Lord and God and Saviour Jesus Christ, on which we orthodox Christians also celebrate our sacred and holy Easter, viz. on the $31^{\text {st }}$ of the month of March.

For one must know that, in that week in which Passover occurs, our <Easter> is also invariably celebrated in the Sunday of the same week; if, however, <Passover> falls on a Sunday, as it falls now, the subsequent Sunday is the one which exhibits our <Easter>, for we determine the days left out in that week, and we add them to the date of that month
in which Passover falls, and the day such a number amounts to, that one we say that it is the one that receives the holy resurrection of Christ.

In order for that which is said to become clearer by means of an example too, Passover has been found on the $24^{\text {th }}$ of the month of March, a Sunday; consequently, our <Easter> will also occur by necessity on the subsequent Sunday. Now then, these are 7 days (viz. a whole week), which, once adding them to March 24, we make 31; therefore, the holy Easter of the believers is also on March 31. By using this day-finding algorithm you will also incontrovertibly find whatever other day of the year you want.

Par. Easter ($\Pi \dot{\alpha} \sigma \chi \alpha)$ can be found once the weekday ($\dot{\eta} \mu \dot{\varepsilon} \rho \alpha$ $\tau \tilde{\eta} \varsigma \dot{\varepsilon} \beta \delta o \mu \dot{\alpha} \delta o \varsigma)$ upon which Passover falls is ascertained. To this end, the following general day-finding algorithm ($\dot{\eta} \mu \varepsilon \rho o-$ $\varepsilon \cup \rho \varepsilon ́ \sigma \iota o \varsigma \mu \dot{\varepsilon} \theta \mathrm{o} \delta \mathrm{o}$) for the weekday $w\left(x_{X}\right)$ of day x of month X in a given solar cycle year $s\left(n_{k}=\right.$ number of days in month k) is needed:

$$
\begin{aligned}
& (s, x, X) \rightarrow s+\llbracket s / 4 \rrbracket \rightarrow s+\llbracket s / 4 \rrbracket+\sum_{k=0}^{X-1}\left(n_{k}-28\right) \rightarrow s+\llbracket s / 4 \rrbracket+\sum_{k=0}^{X-1}\left(n_{k}-28\right)+x \rightarrow \\
& \rightarrow\left[s+\llbracket s / 4 \rrbracket+\sum_{k=0}^{X-1}\left(n_{k}-28\right)+x\right] \bmod 7=w\left(x_{X}\right) .
\end{aligned}
$$

Weekdays from Sunday to Saturday are numbered from 1 to 7.
A computation is carried out for current year AM 6850 [$=1342$] March 24 (Passover), and it yields $s=18 \rightarrow w\left(24_{M}\right)=1$, which means that Passover falls on Palm Sunday. Therefore, the day on which the Orthodox Church celebrates Easter is the following Sunday. An algorithm for finding Easter as the Sunday which comes next a given date is:
$\left(p_{m}\right) \rightarrow p_{m}+\left[8-w\left(p_{m}\right)\right] \rightarrow\left\{p_{m}+\left[8-w\left(p_{m}\right)\right]\right\} \bmod 31=r_{m}$.
A computation is carried out for current year AM 6850 [$=1342$], and it yields $p_{m}=24_{M} \rightarrow$ $r_{m}=31{ }_{M}$.

Comm. The algorithm computes the weekday of any date x in month $X .{ }^{45}$ To this end, it suffices to count the days elapsed from a date falling on a known weekday and remove whole weeks. It should be kept in mind that a year of 365 days exceeds a whole number of weeks by 1 day (summand s in the above algorithm: recall that the Byzantine world era and the solar cycle are synchronized; this summand also includes 365 of the 366 days of a leap year), a leap year exceeds it by 1 additional day (further summand $\llbracket s / 4 \rrbracket$), ${ }^{46}$ a month exceeds it by its own length in days minus 28 days ($=4$ weeks), namely, $n_{k}-28$ in our notation. The sum $\sum_{k=0}^{X-1}\left(n_{k}-28\right)$ is the excess over 28 days of the months from October to the one preceding the given month X. The
${ }^{45}$ This algorithm is ubiquitous in Byzantine Computi. See Anonymus 892, sect. 12; Anonymus 1079, sect. 1, in Mentz, "Beiträge" (cit. n. 38), 76; Psellos, sect. I.13, in Redl, "La chronologie" (cit. n. 36), II, 229-232; Anonymus 1183, sect. 7.
${ }^{46}$ Solar cycle years are used only in computistical algorithms of this kind.
date x must then be added. Reducing the sum modulo 7 involves eliminating whole weeks. As only months of 31 and 30 days are mentioned and because of the leap year contribution included in the term $\llbracket s / 4 \rrbracket$, February must be set to 28 days; given the fact that the summand $\llbracket s / 4 \rrbracket$ is operative throughout the year, the month X must be a month coming after February. This restriction, however, is of no consequence as far as Passover or Easter computations are concerned. To check the consistency of the algorithm, we should recall that the weekday of the epoch date of the Byzantine world era is a Saturday $=7$, so that $w\left(1_{o}\right)=2$ for the first day of the solar cycle, which is the output for $s=1, x=1$.

12

 тò $\lambda \varepsilon \tilde{\pi} \pi \circ \nu \alpha$ ảv $\alpha \pi \lambda \eta \rho o u ̃ v \tau \varepsilon \varsigma ~ \tau о v ̃ ~ \pi \alpha \sigma \chi \alpha \lambda i ́ o v . ~$
${ }^{a}$ lege β íб\& ξ тоऽ

Leap days and leap years

The finding of the leap day has the following rationale. As the Sun passes through its own circle in 365 nychthemera and $\frac{1}{4}$ of a nychthemeron, which are 6 hours, every four years
it completes one nychthemeron, which is also added to the month of February because this is defective-for it has 28 days-and once it has also received this <nychthemeron> it has 29 days, and that year becomes of 366 nychthemera.

Then, whenever you want to know whether a year is a leap year or not, keep the years found from the foundation of the world, and remove them by 4 , and whenever nothing is left out, the year is always a leap year; if one or two or three are left out, the year is not a leap year.

Or also in another way, for the sake of both conciseness and easiness. Keep the years found down from 6800 years, which are 50 now in the present year, and similarly remove these by 4 , that is, cast all tetrads aside, and whenever nothing is left out but it ends in 4 , the year is a leap year; if <it ends in> one or 2 or 3 , as said, it is not a leap year.

For example, let there have been a search for us to find, now and in the present year 6850, whether the year has a leap day or not. And we resolve the years out into 4 as follows, and we say: four times 1000, 4000; four times 500, 2000; 4 times 200, 800; four times 12, 48; 2 are also left out. And we say that the year does not have a leap day. We call the nychthemeron completed every 4 years "bissextile"; this is said "bissextile" from the fact that in early times the priest could speak only in the month of February, on twice-sixth before Calends. So much for you about the finding of the leap year and of the <leap> day. But we must return to the point on which we have also stopped our exposition, by completing what remains of the paschalion.

Par. The Sun traverses its own circle in $365 \frac{1}{4}$ days, therefore every 4 years the 6 exceeding hours make 1 full day, which is added to February. The resulting leap year ($\beta \mathbf{i} \varepsilon \xi \tau \tau \varsigma)$ comprises 366 days.

The criterion for identifying whether a year is a leap year or not is: if $y \equiv 4(\bmod 4)$, then y is a leap year.

A concise and easy criterion is: if $y-6800 \equiv 4(\bmod 4)$, then y is a leap year.
A computation is carried out for current year AM 6850 [$=1341 / 2$], which is not a leap year because $6850 \equiv 2(\bmod 4)$.

A $\beta \mathbf{i} \sigma \varepsilon \xi \tau$ tos "leap day" or "bissextile" is the nychthemeron completed every four years. The origin of the denomination "bissextile" is as follows: the ancient priest was allowed to speak only on a "bis-sextus" (twice-sixth) day before the March Kalends.

13

Meat-Fare Sunday

Now then, as soon as you recognizes in what month and on what date of it Easter has occurred, and you should also find on what date of January or of February Meat-Fare should occur, if the year is not a leap year, always add 3 days to the date of that month in which Easter falls, if it is a leap year, 4, and know that Meat-Fare also occurs on that date of January or of February. One must know that, whenever Easter is found from the twen-ty-second of March up to and including the twenty-eighth of the same <month>, MeatFare always occurs in the month of January; <whenever Easter is found> from <March> 28 and successively up to April 25, <Meat-Fare> is always found in February.

Par. The algorithm for finding the date t of Meat-Fare Sunday ('Ало́кр $\varepsilon \omega$) being r the date of Easter is as follows: ${ }^{47}$
$(r, y) \rightarrow r+3+\llbracket(y \bmod 4) / 4 \rrbracket \rightarrow r+3+\llbracket(y \bmod 4) / 4 \rrbracket-: 1_{J}=t$.
If $22_{M} \leq r \leq 28_{M}-\llbracket(y \bmod 4) / 4 \rrbracket$, then $t \in J$; if $29_{M} \leq r \leq 25_{A}$, then $t \in F$.
Comm. In the Byzantine liturgical calendar, Meat-Fare is the third Sunday of the pre-Lenten period of preparation and repentance; ${ }^{48}$ it falls 8 weeks $=56$ days before Easter. As in nonleap years February plus March last 59 days, Meat-Fare Sunday falls numerically 3 days after Easter (summand $r+3$) but 2 months before the month in which Easter falls, with the due adjustment in leap years (summand $\llbracket(y \bmod 4) / 4 \rrbracket)$, and keeping in mind that if the date of Easter falls on a day after March 29 (28 in leap years), then Meat-Fare Sunday falls in February rather than in January. A modulo 31 reduction is not envisaged by Rhabdas, but it must be introduced in order to take into account Easter dates in March shifting to April because of the addition of $3+\llbracket(y \bmod 4) / 4 \rrbracket$. See also the end of this section.

Easter and Passover Terms

You must also know this, that Easter never occurs below the $22^{\text {nd }}$ of the month of March nor, on the other hand, above April 25. Likewise, Passover neither occurs within March 21 nor does it exceed the eighteenth of April, because the Jews traditionally slay the lamb

[^11]on the full Moon of the first month, the one they call "Nisan", <which begins> within the Spring equinox, whereas we <celebrate our Easter> on the immediately adjacent Sunday.

Par. The terms for Easter are: $22_{M} \leq r \leq 25_{A}$. The terms for Passover are: $21_{M} \leq p \leq 18_{A}$. The Jews slay the lamb on the full Moon of the lunar month that includes the Spring equinox ($\dot{\varepsilon} \alpha \rho \iota v \eta$ ì $\begin{aligned} & \sigma \\ & \mu \\ & \varepsilon \text { - }\end{aligned}$ pía), a month they call "Nisan"; the Christians celebrate Easter on the Sunday next after Passover.

Comm. The intervals given above set the standard terms for Easter and Passover in Byzantine Computi; the former terms straightforwardly derive from the latter by applying the rules for finding the date of Easter. The Passover terms are so determined because the Spring equinox (March 21) is the lower bound and Passover can fall within 1 lunar month from that date. The real upper bound for Passover is April 19: see note 22 above, and the commentary on sect. 15.

Discrepancies between the actual full Moon and the Passover date

Sometimes we also overrun a single week because the full Moon does not occur on the numerical date for Passover handed down in the first place and originally by our divine and holy Fathers, the Moon inheriting the cause <of this> from the transformation of the entire <Cosmos>; for the most venerable astronomers say that the greatest sphere revolves by one degree every hundred years, whereas those later than them, who performed more accurate observations, claim that <it revolves> no more than up to $70<$ degrees every 100 years $>$. It would also be easy for us to carry out a correction of this <discrepancy>, were all Christians subjected to one single ruler and king, very much as this was the case during the realm of Constantine the Great; now, since this is not the case, we disorderly deem it fit to set Easter on a specific day, whereas the Latins and the Iberians set it on another, and again the Triballi, the Bulgars, the Russians, the Alans, the Zicchi, and all the remaining Christian denominations. And for this reason, owing to the virtues of concord and of orderliness, one is content with perpetuating this state of affairs, in order for the others not to believe that there occurs any changing for the sake of changing and confusion. However, it is not the case that we overrun a week from Passover always and every year, but seldom and on specific occasions, exactly as it also happened to be the case right now; for, as the calculation intimates for us that Passover $<$ falls $>$ on March 24, a Sunday, whereas the full Moon of the first Jewish month does not fall on it but on March 22, the Friday before Palm Sunday, because of the previously-adduced reason we did not celebrate Easter on March 24, but on March 31. And go carefully through these <arguments>, in order not to be altogether uninitiated to them.

One must set out an exemple for you, for the sake of greater clarity and ${ }^{* * *}$. On the present occasion, Easter has been found on the $31^{\text {st }}$ of the month of March, and let us seek to learn <where> should Meat-Fare be found. Now then, since the year is by no way a leap year, I add 3 to March 31; and together they yield 34; I remove the 31 days of January from
these; and 3 are left out, which fall in February; for whenever in this <computation> the <resulting> number oversteps 31, casting it [scil. 31] aside February receives what is left out. Then, Meat-Fare has been found on the $3^{\text {rd }}$ of the month of February.

Par. Occasional discrepancies between the actual full Moon (and therefore the actual Passover) and the Passover date that is computed according to the prescriptions of the Church Fathers result in more than 1 week of interval between the full Moon (that is, the actual Passover according to the Jews) and Easter; the reason adduced is the precession of the equinoxes (1 de gree per century according to Ptolemy, 1 degree every 70 years according to later astronomers, who relied on more accurate observations). ${ }^{49}$ Despite the fact that homogeneous standards were achieved when all Christians were united under a single ruler, for instance during Constantine the Great, occasional discrepancies were thereafter left unsettled in order to avoid creating even more confusion, as in Christendom the date of Easter was variable according to the Christian denominations. The discrepancies between the actual full Moon and the Passover date are occasional; notably, an instance occurs in the year in which Rhabdas writes, as the full Moon occurred on March 22, ${ }^{50}$ whereas computations for Passover yield March 24.

A computation is carried out for current year AM 6850 [= 1342], and it yields $r=31_{M} \rightarrow t$ $=3_{F}$. The example shows that the algorithm set out at the beginning of this section is read (and should be read) as follows:

$$
(r, y) \rightarrow r+3+\llbracket(y \bmod 4) / 4 \rrbracket \rightarrow(r+3+\llbracket(y \bmod 4) / 4 \rrbracket) \bmod 31=t .
$$

Comm. As Julian calendar years are modelled on the tropical year, the precession of the equinoxes is irrelevant to determining the date of Easter. Rhabdas' statement is therefore wrong. In sources contemporary with Rhabdas, Barlaam stressed a gap of about 1 day every 304 years between real and schematic Moons, based on a more accurate value of the mean synodic month (see sect. 7). The gap accumulated since the times of the conception of the "table of the fathers", Barlaam writes, amounts to 2 days. ${ }^{51}$
${ }^{49}$ The latter is among the values used in Arabic astronomy; see the discussion in S. Mohammad Mozaffari, "A Medieval Bright Star Table: The Non-Ptolemaic Star Table in the İlkhānī Zī̀", Journal for the History of Astronomy 47 (2016), 294-316, in particular 303-307. Values such as $1 \% / 66^{y}$ were known to Byzantine astronomers acquainted with the Arabic tradition as early as ca. 1032: J. Mogenet, "Une scolie inédite du Vat. gr. 1594 sur les rapports entre l'astronomie arabe et Byzance", Osiris 14 (1962), 198-221, at 209 (section 29).
${ }^{50}$ On AD 1342 March 22, at 23:42 UT, according to http://www.eclipsewise.com/. Recall that the local time in Constantinople is nearly exactly UT +2 hours and that a morning epoch was used in Byzantium, so that the entire night is attached to the previous day: Neugebauer, HAMA (cit. n. 29), 1069 n. 6.
${ }^{51}$ Tihon, "Barlaam" (cit. n. 20), 376-378 (sects. 23-29). The "table of the Fathers" denotes the Damascene table and its traditional list of Passover dates. John Damascenus lived about 600 years before Barlaam and Rhabdas.

 $\pi \varepsilon i \rho a \varsigma ~ a ̉ \lambda \eta \theta \varepsilon ̀ \varsigma ~ к \alpha i ̀ ~ \alpha a ̀ v a \mu \varphi i ß o \lambda o v ~ \varphi a v \varepsilon i ́ \eta ~ \tau o ̀ ~ \lambda \varepsilon \gamma o ́ \mu \varepsilon v o v, ~ a ̉ \rho i \theta \mu \eta \sigma o v ~ a ̉ \pi o ̀ ~ \tau \eta ̃ \varsigma ~ \tau о v ̃ ~ M a \rho \tau i o v ~$

 $\pi \alpha \sigma \chi \alpha \lambda i \omega \nu$ عi $\delta \dot{\eta} \sigma \varepsilon \omega \varsigma$.
${ }^{\text {a }}$ pro verbo signum

Apostles' Fast

You will find the Apostles' Fast that occurs in Summer after Pentecost as follows. Reckon from the day on which Easter occurred up to the third of the month of May, and whatever number you find, so many are also the days of the Fast of the holy, glorious, and all-praiseworthy Apostles, which occurs in Summer.

For instance, the sacred holy Easter has been found on the $31^{\text {st }}$ of the month of March, and I reckon from this <day> up to the third of the month of May, and I find 33 days, and I say that so many are also the days of the aestival fast. In order for that which is said to appear true and unambiguous by means of a multiple check and test too, reckon, from the month of March (namely, from April 1), the successive days of the months up to and including the $29^{\text {th }}$ of the month of June, on which the venerable remembrance of the holy Apostles occurs, and remove from them 50 days of the holy Pentecost and 7 of the week of the Holy and Life-creating Spirit, and those which are left out are the days of the Apostles' Fast. Then, 90 days are found as follows: 30 from April, 31 from May, and 29 from June; together, again, 90 too; then, casting 57 days aside from them 33 days are left out, as many, as is clear, as were also found by means of the previous algorithm. So much for you about the knowledge of the paschalia too.

Par. Apostles' Fast ($\mathrm{N} \eta \sigma \tau \varepsilon \dot{\prime} \alpha \tau \tilde{\omega} v \dot{\alpha} \gamma \dot{\prime} \omega v \dot{\alpha} \pi \sigma o \sigma \tau \dot{O} \lambda \omega v$) is the period f_{H} reckoned from Easter to May 3. The algorithm for finding f_{H} being r the date of Easter is as follows:
$(r) \rightarrow r \in M \rightarrow 3_{M a}-r=f_{H}$.
A computation is carried out for current year AM 6850 [= 1342], and it yields $r=31_{M} \rightarrow f_{H}$ $=33$ days.

And this suffices for a comprehensive survey of Paschalia.
Comm. The rationale behind choosing May 3 as the reference date for the subtraction is the following: ${ }^{52}$ Apostles' Fast begins the second Monday after Pentecost, that is, 57 days after Easter (57 = the 50 days of Pentecost plus 1 week) and ends on June 28 . However, an inclusive time interval that begins 57 days after Easter and ends on June 28 is equal to an inclusive time interval that begins on Easter and ends 57 days before June 28, that is, on May 2. Prescribing May 3 means that one must reckon (and not count) ${ }^{53}$ the days from Easter and up to May 3.

[^12]

 Nŋбтєíav $\tau \tilde{\omega} \nu \dot{\alpha} \gamma i \omega \nu$ ả $\tau 0 \sigma \tau o ́ \lambda \omega \nu$.

 $\lambda \alpha$ тои̃ Maptiou $\mu \eta \nu$ о́я.

 غ́ $\rho \alpha \dot{\alpha} \sigma \mu \varepsilon$.

a	'А $\pi \rho$	β	β	Máp	$\kappa \beta$	γ	'A $\pi \rho$	1	δ	Máp	λ	ε	' $\mathrm{A} \pi \rho$	ı η	ς	' $\mathrm{A} \pi \rho$	ζ
ζ	Máp	$\kappa \zeta$	η	'Ал	1ε	θ	'Ал	δ	1	Máp	$\kappa \delta$	ta	'А $\pi \rho$, β	, β	' π п ρ	α
¢	Máp	ка	1δ	'A $\pi \rho$	θ	1ε	Máp	$\kappa \theta$	15	'A $\pi \rho$	ı	に	'A $\pi \rho$	ε	in	Máp	$\kappa \varepsilon$
$\stackrel{\text { เ }}{ }$	'A $\pi \rho$	γ	кат	à λ '	$\theta \eta \nu \dot{\varepsilon}$	γ ¢́vo	v τ	тà π	o $\lambda \lambda$	à $\tau \varepsilon$	$\tau \rho \dot{\alpha}$	$\gamma \omega \nu$	α				

A paschalion without using Passover

I have always been utterly surprised by the fact that our divine and god-carrying Fathers, those that met in the first synod to set out the finding of Easter, I mean, by the fact that they did not put their minds to make, by whatever algorithm, the finding of Meat-Fare come first, but, on the contrary, they decreed that Meat-Fare should be found after the explanation of Easter. It has been a pleasure for me to work hard on this too, and to succeed thanks to such-and-such holy prayers; still, it is also worth setting out the reason why I resolved to get involved in this game. For I was once engaged in a discussion with a Jew about our faith; he also adduced this as a charge of sorts, that betcha we are unable to find our Easter without Passover; whence, working hard on this I found out a wonderful algorithm that can find our sacred and holy Easter independently of Passover, except that <this does not happen> in perturbed order, as for <an algorithm> that first finds Easter by means of that one [scil. Passover], then accordingly Meat-Fare by means of it [scil. Easter], and the aestival fast first last, but in due order, Meat-Fare first, then Easter, and forthwith the Apostles' Fast that occurs in Summer.

It is as follows. Keep the present cycle of the Moon what<ever> it is on the first of the month of January, and, from the beginning of such a month of January, raise as many days as you need for the filling of 50 days, compounded, as is clear, with the base of the Moon; if both the base and all days of the month of January do not suffice, I take the <days> missing for the completion of the 50 days from the month of February-except that you must also know this, that, whenever the base of the Moon is equal to the days of the month of February, and this is 28 or 29 , one has to neglect the base of the Moon altogether, and to take the quantity of 50 days from the two months of January and February only-and find, by the day-finding algorithm, what weekday is the date of that month in which the fiftieth day ended, and if one <day> is left out, I say that this is the Sunday of the Prodigal Son, if 2, it is Monday of the week of Meat-Fare, if three, it is Tuesday of the same week, and similarly in succession up to Saturday, and it is clear that the forthcoming Sunday of the same week is Meat-Fare. ${ }^{54}$ Then, keep the date of the month on which the fiftieth day falls; add to it the remaining days up to and including the forthcoming Sunday too, and say that that one is the day of Meat-Fare. - Then, thereafter, if you also wish to know when Passover occurs, consider the cycle of the Moon what<ever> it is, and you will find, in the table set out below for you, the number that is placed next <to it>, whether it is in March or in April.

Par. Rhabdas wonders why the Church Fathers chose to determine the date of Meat-Fare Sunday after the date of Easter rather than vice versa. Spurred by an exchange with a Jew-who

[^13]reproached Christians for not being able to compute the date of Easter without using the date of Passover-Rhabdas set out to find an algorithm for computing the dates of Meat-Fare Sunday and of Easter, and the duration of Apostles' Fast, in this order and without computing the date of Passover.

The algorithm for finding such a paschalion once the base b_{m} is given [the sign $S(*)$ is the Sunday next after day ${ }^{*}$] is as follows:

$$
\left(b_{m}\right) \rightarrow 50-b_{m}-: 1_{J} \rightarrow w\left(50-b_{m}-: 1_{J}\right) \rightarrow S\left[w\left(50-b_{m}-: 1_{)}\right)\right]=f_{m} \rightarrow f_{m}+56=r_{m} \rightarrow 3_{M a}-r_{m}=
$$ $f_{H, m}$.

Comm. Rhabdas reuses a part of his Letter to Tzavoukhes. ${ }^{55}$ To explain his rule, I shall combine the definition of "base" given in sect. 6 (which, contrary to what Rhabdas claims, is not the "base on January first"): $b_{m}=(11 m+3) \bmod 30$, and the rule for Passover given in sect. 10: $p_{m}=50-[(11 m+6) \bmod 30]-: 1_{M}$. Bypassing for the sake of simplicity some niceties of modular reduction, we get $p_{m}=50-3-[(11 m+3) \bmod 30]-: 1_{M}=50-3-b_{m}-: 1_{M}=$ $47-b_{m}-: 1_{M^{2}}$. Now, counting lunar days starting from January 1 rather than March 1 adds 59 days: $p_{m}=59+47-b_{m}-: 1_{J}=106-b_{m}-: 1_{J}$. We are seeking a proxy for Passover such that MeatFare Sunday is the proxy for Easter: therefore, the proxy for Passover must precede Passover by 8 weeks, that is, by 56 days: $\operatorname{Proxy}\left(p_{m}\right)=106-56-b_{m}-: 1_{J}=50-b_{m}-: 1_{J}$. Rhabdas asserts that values of $b_{m}=28,29$ (that is, $m=5,16$) must be disregarded, counting directly 50 days from January 1. The reason is that January 21 or 22 are too early dates for a proxy Passover, for Passover would thus fall on March 19 or 20 at the latest. The striking anomaly of this algorithm is that the saltus lunae disappears, unless it is included in the definition of the base, which is not what Rhabdas does. This-and the mistake in locating the saltus itself in the main algorithm found in sect. 10-shows that Rhabdas drew this idea and most of his material from some previous authority, and incorporated this information into his text without fully understanding its implications.

To my knowledge, Rhabdas is the first author who sets forth, and openly presents it as such, an algorithm for computing the date of Easter without mentioning Passover. However, the same algorithm, without Rhabdas' sagacious point about the algorithm not using Passover, is found in the 1335 Computus contained in Matthew Blastares' ${ }^{2} v \tau \tau \alpha \gamma \mu \alpha .{ }^{56}$ As Blastares' treatise is a compilation, it is likely that Rhabdas and Blastares depend on a common source. Isaac Argyros appropriated the same idea in his Computus dated 1372 and claimed that it was his own discovery, which is exactly what Rhabdas had claimed thirty-one years before. ${ }^{57}$

[^14]
An alternative algorithm for computing Passover; computation of a paschalion

Or also in another way. Ascertain where Passover fell in the bygone year, and if you find that it occurred in April, walk 11 days back, and know that Passover is on the successive <day>, viz. the twelfth; if <Passover> fell in March, add 18 nychthemera, and know that Passover occurs on the successive <nychthemeron>, viz. the nineteenth. - Then reckon 56 days from Meat-Fare Sunday, and wherever you stop on, Easter is there; and again, by determining <the number> from Easter up to the third of May you will also find Apostles' Fast.

In order for that which is said to be also clearer with an example, let it be supposed for us to find, in the now-current year 6850, Meat-Fare, Passover, the sacred holy Easter, and the aestival fast. And since in such a year the cycle of the Moon has been found to be the tenth and its base is the twenty-third, I keep this (namely, 23), and I also take 27 days from January for filling 50 . And since the fiftieth day stopped on January 27, by means of the day-finding algorithm I seek what weekday happens to be, and I find this by means of the algorithm written above, as follows. The cycle of the Sun turns out to be the $18^{\text {th }} ;$ I also add to this the fourths cast upon it from the leap day, which are 4; and they yield 22; similarly I also add to these the epacts of the three months bygone from the beginning of October up to January, which are also 8; and, with 22, they yield 30; I also compound the 27 <days> of January with these; and all of them together yield 57, from which I remove eight weeks; and one day is left out for me, which I also say to be the Sunday of the Prodigal Son, and the other, forthcoming Sunday, which is the third of the month of February, is Meat-Fare, for 7 and 27; they yield 34, from which cast aside $31<$ days> of January; 3 days are also left out, which are also in February, on which <day>, as is clear, I say that Meat-Fare has also been found. I seek Passover, and I find, in the table arranged below, that the $24^{\text {th }}$ of the month of March is placed next to the tenth cycle of the Moon. Or also in another way. I ascertain where Passover fell in the bygone year, and I find this on April 4; I walk 11 days back from it, and in this way too I arrive at March 24, a Sunday, as you will find by calculation.

I want to find our holy Easter of the believers, and I reckon, from Meat-Fare Sunday, the successive days until I have enough for 56 days, and wherever they are completed, I say that on that day our Easter also occurs. For instance, Meat-Fare has been found on February 3; and I cast these aside from the 28 days of February; 25 days are also left out; I also add the 31 <days> of March to these; and together they yield 56 days. And I say that the holy Easter has also been found on the $31^{\text {st }}$ of the month of March.

Par. The date of Passover for each lunar cycle year is set out in a table given at the end of the treatise. An alternative algorithm, for computing Passover at lunar cycle year $m+1$ once Passover at year m is known, is as follows:

$$
\begin{aligned}
& \left(p_{m}\right) \rightarrow \\
& \mid p_{m} \in A, p_{m}-11=p_{m+1} . \\
& \mid p_{m} \in M, p_{m}+19=p_{m+1} .
\end{aligned}
$$

Comm. This algorithm formalizes the following data: ${ }^{58}$ since each year the epacts increase by 11 units, the date of Passover shifts backwards by 11 days from an assigned year to the next. However, Passover cannot fall earlier than March 21; therefore, such early dates are replaced by a date falling one lunar month later. Given the fact that $19 \equiv-11(\bmod 30)$ and that Rhabdas does not use monthly dates for p_{m+1} but counts calendar days from March 1, whenever the Passover date falls outside the lower bound, March 21, of the 30-day Passover interval $21_{M} \leq p \leq 19_{A}$, it enters again this interval from its upper bound, April 19, increased by 19 days. ${ }^{59}$ As usual, Rhabdas makes a mess of the figures by mixing up counting and reckoning; he does not take into account the saltus lunae, either.

An alternative algorithm for computing Easter

Or also in another way. Remove 3 days from the numerical date on which Meat-Fare has been found, 4 if it is a leap year, and look at how much it is and where it falls, namely, whether in January or in February, the <numerical date> left out, and, if the quantity left out after the removal of three or of 4 falls in February, say that, according to this, Easter also occurs in April; if, however, <the former falls> in January, say that <the latter> has been found in March. For instance, Meat-Fare has been found on February 3; and I remove these because it is not a leap year, and I stop on January 31, and I say that Easter occurs on the $31^{\text {st }}$ of the month of March.

Starting from this, I determine the successive days of April up to the third of the month of May, and I find that these days are 34, and I say that 34 days are also the days of the aestival Apostles' Fast.

Pay also attention that this algorithm will not escape you, best and loveliest of my friends.

[^15]Par. A computation is carried out for current year AM 6850 [$=1342$], and it yields ($m=$ $10, s=18, p_{m}=24_{M}{ }^{60} \rightarrow f_{m}=3_{F} \rightarrow r_{m}=31_{M} \rightarrow f_{H}=34$ (the right value is 33 ; Rhabdas counted days instead of reckoning them, see sect. 14).

An alternative algorithm for Easter is:
$(f) \rightarrow f-(3+\llbracket(y \bmod 4) / 4 \rrbracket)-: 1_{J, F}=r-: 1_{M, A}$.
A Passover table is finally provided, originally set out with too many cells, as a phrase written within the table itself confirms ("too many squares resulted because of a mistake"):

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p_{m}	2	22_{M}	10	30_{M}	18	7	27_{M}	15	4	24_{M}	12	1	21_{M}	9	29_{M}	17	5	25_{M}	13

Comm. The table sets out the traditional Passover dates. The table also shows that, in the above rule for computing Passover at lunar cycle year $m+1$ once Passover at year m is known, Rhabdas neglects the saltus lunae, for p_{17} and p_{16} differ by 12 days, not by 11 days as is prescribed by the rule.

Appendix. A Thematic Word Index to Rhabdas' Computus ${ }^{61}$

Chronological terms

A "cycle" (кúк ос: 2-6, 10-12, 15) first "begins" (ả $\rho \chi \varepsilon \tau \alpha 1: 3,5$), then "reaches to" (ảvغ́ $\rho \chi \varepsilon$ $\tau \alpha ı$ દic: 3,5) its last year, and finally "takes again its beginning" / "begins again first" ($\pi \alpha \dot{\alpha} \lambda \iota$ $\lambda \alpha \mu \beta \dot{\alpha} v \varepsilon \iota \alpha \dot{\alpha} \rho \chi \dot{\eta} v /$ / $\alpha \rho \chi \varepsilon \tau \alpha \iota \pi \rho \tilde{\omega} \tau о \varsigma: 3,5)$. Temporal segments and computations go "from"
 $2,4,5,12$) the first item "up to" ($\mu \varepsilon \varepsilon_{\chi \rho ı} /{ }^{\alpha} \chi \rho \mathrm{l}: 2,7,9-11,13-15$) the last one, which is included if каi (translated "and including": 7, 13-15) is added. Dates can be "above" (äv ω $\theta \varepsilon v$; also ε है $\sigma \omega \theta \varepsilon v$ "within": both in 12 , or $\dot{v} \pi \varepsilon \rho \beta \dot{\alpha} \lambda \lambda \omega \nu$ "exceeding": 13) or "below" ($\kappa \dot{\alpha}-$ $\tau \omega \theta \varepsilon v$) an assigned date (12). Past time segments are "bygone" ($\pi \alpha \rho \varepsilon \lambda \theta$ óv $\tau \varepsilon \varsigma: 7,10-11$,
${ }^{60}$ As the clever algorithm given at the beginning of this section computes the date of Easter without using the date of Passover, the latter date is read in the table attached to the end of Rhabdas' Computus or it is computed by means of the last algorithm.
${ }^{61}$ The most important computistical terms were also given above, in the commentary to the relevant sections of Rhabdas' Computus. After each lexical item, the sections of Rhabdas' Computus that contain it are indicated; I skip the boldface. Here I adopt the same translations I give in the thematic word index in Acerbi, "Byzantine Easter Computi" (cit. n. 19). For the partly overlapping technical lexicon of Rechenbücher, see K. Vogel, Ein byzantinisches Rechenbuch des frühen 14. Jahrhunderts (Wiener Byzantinische Studien 6), Wien 1968, 141-143, and the thematic word index in F. Acerbi, "Byzantine Rechenbücher: An Overview with an Edition of Anonymi L and J", Jahrbuch der Österreichischen Byzantinistik 69 (2019), 1-57, at 17-20.

15）；the current（cycle）year and the＂base＂（ $\theta \varepsilon \mu \dot{\varepsilon} \lambda$ ıoc： $1,3,6-8,15$ ）are＂present＂（ ε vıб效－

 a structureless time－token is an＂occasion＂（каıрóс：2，9，10，13）．The first＂day＂（ $\dot{\eta} \mu \varepsilon \dot{\varepsilon} \rho a$ ： 6－15）of a＂month＂（ $\mu \eta \dot{v}: 2-3,5,7,8,10-15$ ）is its＂beginning＂（ả $\rho \chi \mathfrak{\eta}: 11,15$ ）；the＂year＂ is है́tos（ $2,4-6,10,12,15$ ），घ̇vıautós（ $2,11-13$ ），or χ рóvos $(2,3,5,8-10,12,13,15)$ ．The determination of the date on which a festival someone＂celebrates＂（ $\dot{\varepsilon} \rho \tau \dot{\alpha} \zeta \varepsilon \iota: 11$ ）＂falls＂
 $11)$ it or on which＂it is celebrated＂（［غ̇лı－／$\sigma v \vee] \tau \varepsilon \lambda \varepsilon \tilde{\tau} \tau \alpha 1: 11,13,15)$－is stressed by the correlatives＂where［ver］．．．there＂（ $\varepsilon v \theta a \ldots$ ．．$\varepsilon v \tau a u ́ \tau \eta ~ / ~ દ ̇ \kappa \varepsilon \tilde{\varepsilon}: ~ 10 / 15)$ and＂wherever ．．．in
 expected date．The day of the＂week＂（ $\dot{\varepsilon} \delta$ o $\mu \dot{\alpha} c: 11,13-15$ ）on which a date falls is found by means of a＂day－finding＂（ $\dot{\eta} \mu \varepsilon \rho о \varepsilon \nu \rho \varepsilon \dot{\sigma} \iota \circ \varsigma: 11,15)$ algorithm．The＂age of the Moon＂
 $2-3,5-10,13,15]$ is also called $\mu \tilde{\eta} \nu \iota \varsigma: 9$ ）or a＂date＂（ π обтŋ่： $7,11,13,15$ ；лобтаia：15）that ＂falls＂（ $\varepsilon \mu \pi i \pi \tau \varepsilon ⿺: 13$ ）within a month is also called＂quantity＂（ π обó $\tau \eta \varsigma: 7,13,15$ ）；the＂lu－ nar month＂is also called $\varphi \varepsilon \gamma \gamma \dot{\alpha} \rho ı \varsigma$（8）．The Moon＂shines＂（ $\varphi \alpha{ }^{\prime} \nu \varepsilon$ ： $9 ; \varphi \alpha u ́ \varepsilon ı: 9 ; \lambda \dot{\alpha} \mu \pi \varepsilon$ ： 8，9；$\mu \alpha \rho \mu \alpha$ рєı：9；or $\delta \alpha \delta_{0} \delta$ оиєгi： 8 ［here translated＂to carry the torch alight＂］，9）so many ＂hours＂（ $\tilde{\omega} \rho \alpha:$ ： $8,9,12$ ）and＂minutes＂（ $\lambda \varepsilon \pi \tau \alpha \dot{\alpha}: 7-9$ ）in a＂night＂（vú $: 9$ ）．A 24－hour day is a＂nychthemeron＂（ $v v \chi \theta \dot{\eta} \mu \varepsilon \rho o v: 9,12,15)$ ，which in specific conditions is＂completed＂
 days，the latter occurring in a＂leap year＂（ β íб\＆ $\boldsymbol{\tau}_{\text {тос：}} 8,11-13,15$ ；in 8,11 ，and 12 also ＂leap day＂；in 12 ＂bissextile＂，as an adjective）．The＂epacts＂（ $\varepsilon \pi \alpha \kappa \tau \alpha i: 8,11,15$ ）and the ＂indiction＂（i้vסוктоৎ：2，8）also belong to this lexical domain．

Specific mathematical terms

Investigation．$\gamma \iota \nu \omega \dot{\sigma} \kappa \omega$ ：to know（15）；$\gamma \nu \omega \rho i \zeta \omega$ ：to recognize $(9,13) ; \varepsilon \dot{\varepsilon} \xi \varepsilon \tau \dot{\alpha} \zeta \omega$ ：to ascertain
 12－13，15）and そं $\uparrow \tau \sigma \iota \varsigma: ~ s e a r c h ~(7, ~ 9-11) ; ~ \kappa \alpha \tau \alpha ́ \lambda \eta \psi ı \varsigma: ~ a p p r e h e n s i o n ~(2) ; ~ \mu \alpha v \theta \dot{\alpha} v \omega$ ：to learn （1，9，11，13），and $\mu \dot{\alpha} \theta \eta \sigma \iota \varsigma: ~ l e a r n i n g ~(1) ; ~ o ́ \rho \dot{\alpha} \omega$ ：to look at（15）；бколદ́ ω ：to consider（2， 15）；і́то́кعццат：to suppose（15）．

Initializing an algorithm．кратє́ ω ：to keep（2，4－8，11，15）．
Counting and reckoning．á $\pi \alpha \rho \tau i \zeta \omega$ ：to complete（12）and á $\pi \dot{\alpha} \rho \tau \iota \sigma \iota \varsigma:$ completion（15）； $\alpha \dot{\alpha} \rho \iota \theta \mu \dot{\varepsilon} \omega$ ：to reckon $(14,15)$ and ảpı $\theta \mu$ ós：number $(2,6,7,9-11,13-15)$ ；$\grave{\varepsilon} \xi$ ıбoṽ $\mu \alpha$ ：to be equal to $(8,15)$ ；кa $\alpha \alpha \nu \tau \alpha \omega$ ：to arrive at（15）；катغ́ $\chi \omega$ ：to hold（ 8 ；＂to collect＂，said of taxes： 2）；кратغ́ ω ：to keep（10）；（ката）$\lambda \alpha \mu \beta \dot{\alpha} v \omega$ ：to take（ $6,8,10,11,15$ ）；（ $\kappa \alpha \tau \alpha) \lambda \eta$＇$\gamma \omega$ ：to stop on（12，15）；$\lambda о \gamma^{\prime} \zeta$ о $\mu \alpha$ ：to be reckoned（9）；$\mu \varepsilon \tau \rho \varepsilon \dot{\varepsilon} \omega$ ：to determine（11，15）；ó $\pi \iota \sigma \theta$ о $\boldsymbol{\pi} \boldsymbol{\sigma} \delta \dot{\varepsilon} \omega$ ：
 to $(7,11) ; \tau \varepsilon \lambda \varepsilon v \tau \alpha \dot{\alpha} \omega$: to end in $(12,15)$; $\dot{\tau} \pi \varepsilon \rho \beta \alpha i v \omega$: to overstep $(8,13) ; \varphi \theta \dot{\alpha} \nu \omega$: to happen \ldots first (10); $\psi \eta \varphi_{i} \zeta \omega$: to calculate (15) and $\psi \tilde{\eta} \varphi \circ \varsigma$: calculation (13). The result of any operation is indicated by π oté ω : to make ($8,9,11$). Any quantity can be a "whole" (ó λ ók $\lambda \eta$ рос: 11) and possibly a "part" (μ ह́ $\rho \circ \varsigma: 9$), that is, a fraction.

Identification of the result of an operation as a chronological item. à $\pi о \varphi \alpha i v o \mu \alpha \mathrm{l}$: to declare (9); $\gamma \iota \omega \dot{\omega} \kappa \omega$: to know (15); عúpíбк ω : to find (13, 15); $\lambda \dot{\varepsilon} \gamma \omega$: to say $(6,8-12,14$, $15)$; vó่ ω : to consider (7), to conceive (9); oĩ $\delta \alpha$: to know $(13,15)$.
 wherever (15); ő óc: as many, how many, whatever ($6,7,9,10,14,15$); ó $\sigma \dot{\alpha} \kappa ı \varsigma$: how many

 (11); тоเои̃тоৎ: such $(2,7,10,12,13,15)$; тобои̃тo¢: such, so much $(2,8,9,12,14)$.
 (9); $\pi \varepsilon v \tau \varepsilon \kappa \alpha \iota \delta \varepsilon \kappa \alpha ́ \varsigma: ~ p e n t a d e c a d ~(2, ~ 9, ~ 19) ; ~ \tau \varepsilon \tau \rho \alpha ́ \varsigma: ~ t e t r a d ~(12) ; ~ \tau \rho ı \alpha к о \nu \tau \alpha ́ \varsigma: ~ t h i r t y ~(6-8, ~$ 10), $\chi \iota \lambda \iota \alpha ́ \varsigma$: thousand (10).

Operations

Addition. ($\sigma \cup v$) $\dot{\alpha} \theta \rho o i \zeta \omega$: to put together (7,10); $\dot{\varepsilon} \pi ı \beta \dot{\alpha} \lambda \lambda \omega$: to cast upon $(9,11,15) ; \dot{\varepsilon} v o ́ \omega$ $\dot{o} \mu \mathrm{ov}$: to unite together (11); $\pi \rho о \sigma \tau i \theta \eta \mu$: to add $(6-8,10-13,15)$; $\sigma v v \alpha \dot{\alpha} \omega$: to gather (79, 11); $\sigma u v \tau i \theta \eta \mu$: to compound (15). The result is indicated by $\gamma^{\prime} v o \mu \alpha$: to yield ($2,4-6$, $8-10,13,15)$; ó ρ оṽ: together $(5-6,8,10,11,13-15)$; $\sigma v v \alpha \gamma \omega \gamma \dot{\eta}$: gathering (2). The operation is called $\pi \rho о \sigma \theta \dot{\eta} \kappa \eta$: addition (8).

Subtraction. $\dot{\alpha} \varphi \alpha$ ı $\rho \dot{\varepsilon} \omega$: to remove ($2,4-11,13-15$); $\dot{\varepsilon} \kappa \beta \dot{\alpha} \lambda \lambda \omega$: to cast aside (2, 4, 9, 13$15)$; ̇̇ $\pi \alpha i \rho \omega$: to raise $(10,15)$. The remainder is indicated by the following items: $\dot{\varepsilon} v a \pi o-$

 $\operatorname{der}(2,4,5) ; \mu \varepsilon \dot{\varepsilon} \nu \omega$: to remain $(2,4,5,9) ; \pi \varepsilon \rho \iota \tau \tau \varepsilon \dot{v} \omega$: to remain over $(2,8)$. The operation is called $\dot{\alpha} \varphi \alpha i \rho \varepsilon \sigma ı \varsigma: ~ r e m o v a l ~(15) . ~$.

Multiplication. $\pi \mathrm{o} \lambda v-/ \pi \mathrm{o} \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota \dot{\alpha} \zeta \omega$: to multiply (9); $\mu \varepsilon \tau \rho \varepsilon \dot{\varepsilon} \omega$: to measure (10). However, multiplication is mainly formulated by means of an -akıs adverb ($2,6,9,10$, 12). The result is indicated by participial forms of yivoual: to result $(6,9)$. The operation is called $\pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha \sigma \mu o ́ \varsigma ~(6,10)$.

Taking multiples. $\varepsilon v \delta \varepsilon \kappa \alpha \pi \lambda \alpha \sigma i \alpha \sigma o v: ~ u n d e c u p l e ~(6, ~ 10) ; ~ \tau \varepsilon \tau \rho \alpha \pi \lambda \alpha \sigma i \alpha \zeta \varepsilon: ~ q u a d r u p l e ~(9) . ~$
Division. $\mu \varepsilon \rho i \zeta \omega$ тa $\alpha \dot{\alpha}$: to divide by $(4,5,9)$,

Modulo reduction．ảva入ú ω عi̧／ह̇ πi／$\pi \alpha \rho \dot{\alpha}:$ to resolve out into（ $2,5,12$ ）；$\dot{\alpha} \varphi \alpha \iota \rho \varepsilon ́ \omega$
 The remainder is indicated by the participial forms $\tau \alpha ̀$ عט́pıбкó $\mu \varepsilon v \alpha$／ката入 $\varepsilon \iota \varphi \theta \varepsilon \dot{\varepsilon} v \tau \alpha$／ $\dot{\varepsilon} v a \pi \mathrm{O} \lambda \varepsilon เ \varphi \theta \dot{\varepsilon} v \tau \alpha \kappa \alpha \dot{\tau} \omega \omega \theta \varepsilon v$ ：that which is found／left down（2，4－7，10－12，15）．

Metadiscourse

Mathematical universality and generality are conveyed by the adverbs＂always＂（ảci：9， 13；$\pi \dot{\alpha} v \tau \omega \varsigma: 2,4,9,12,13$ ；$\pi \alpha \dot{\alpha} v \tau \tau \varepsilon: 13$ ）and＂altogether＂（ $\pi \alpha \nu \tau \varepsilon \lambda \tilde{\omega} \varsigma: 13,15)$ ．Iteration is formulated by＂successive［ly］＂，＂in succession＂（［ $\kappa \alpha-/ \dot{\varepsilon} \varphi] \dot{\varepsilon} \xi \tilde{\eta} c: 7,8,11,13-15$ ），ap－ proximation by＂very nearly＂（ $\varepsilon \gamma \gamma \iota \sigma \tau \alpha: 8$ ）．An＂algorithm＂（ $\mu \dot{\varepsilon} \theta$ o $\delta o \varsigma: 1$［here translated
 13），＂concise＂（бv́vтонос： $2,4,5,8,12$ ），＂general＂（каӨó入ov： $8 ; \kappa \alpha \theta$ o $\lambda_{\iota к \eta ́: ~}^{7}$ ），and＂exact＂
 be discarded is marked by＂to neglect＂（ $\varepsilon \dot{\alpha} \omega: 15$ ）．Examples are introduced by＂for ins－
 15）．Metamathematical markers include the modal operators＂one must＂（ $\delta \varepsilon \tilde{\imath}: 10,15$ ） and＂by necessity＂（ $\dot{\varepsilon} \xi \dot{\alpha} v \alpha \dot{\alpha} \gamma \kappa \varsigma: 8,11$ ），verbal adjectives with termination－$\tau \dot{\varepsilon} \circ \mathcal{V}(2,3$ ， 8－13），the verb＂to need＂（ $\chi \rho \underline{ŋ} \zeta \omega: 10,11,15$ ），modal＂should＂（ $\mu \dot{\varepsilon} \lambda \lambda \varepsilon \varepsilon: 8,9,11,13$ ），the volition verbs＂to wish＂（ β oú ${ }^{\prime}$ o $\mu \alpha \mathrm{al}: 2,4,5,15$ ），＂to want＂（ $[\dot{\varepsilon}] \theta \dot{\varepsilon} \lambda \omega: 7,9,11,12,15$ ），and
 $5)$ and＂（we）do＂（ $\pi o i \varepsilon: 4,5$ ；лоוoṽ $\mu \varepsilon v: 10$ ）introduce a computation．The adverb＂as fol－ lows＂（ov́ $\tau \varsigma \varsigma: 2,4-6,8-15$ ）introduces an algorithm；the adverb＂similarly＂（ó $\mu \mathrm{o} i \omega \varsigma: 11$ ， $12,15)$ replaces an algorithm that is identical to an algorithm previously carried out．The
 ＂given＂（ $\delta 0 \theta \varepsilon \tilde{\tau} \sigma \alpha: ~ 9 ; ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \eta: ~ 10), ~ " w r i t t e n ~ a b o v e " ~(\pi \rho о ү \rho а \varphi \varepsilon \tau ̃ \sigma \alpha: ~ 15), ~ a n d ~ " e x p o u n d e d ~$ （above）＂（［ $\pi \rho \circ \rho] \rho \eta \theta \varepsilon i \tau \alpha a: 9)$ refer to a known algorithm．An entry in a＂table＂（ $\pi \lambda \iota \nu \theta i c$ ： 15）has a number＂placed next＂（ $л \alpha \rho \alpha к \varepsilon \dot{\prime} \mu \varepsilon \nu \circ \varsigma: 15)$ to it．

[^0]: I would like to thank Olivier Delouis for his assistance in Byzantine fiscal matters and for triggering this Rhabdas-Renaissance, Divna Manolova for drawing my attention to the fact that the Leeds manuscript contains a work by Rhabdas that is "unedited and [whose] addressee is unattested", Inmaculada Pérez Martín for her paleographic expertises, and Alessandra Petrocchi for her helpful comments on a first draft of this paper. After submitting this study I have come
 клךбıабтıкои́я $\lambda о ү \alpha \rho \iota \alpha \sigma \mu о и ́ \varsigma ", ~ N \varepsilon v ́ \sigma \iota \varsigma ~ 27-28 ~(2019-20), ~ 353-399 ~(b u t ~ s t i l l ~ i n ~ p r e s s ~ a t ~ t h e ~ t i m e) ; ~ ;$ this paper does not translate Rhabdas' Computus, does not contain any technical analysis, does not set a systematic comparison with parallel algorithms in other sources, does not present the Leeds manuscripts, and does not recognize Rhabdas' autography; for these reasons, and after some hesitation, I decided not to withdraw my paper. Readers will easily grasp the difference between the two approaches to Rhabdas' Computus.
 ${ }^{1}$ The set of the three manuscripts is assigned the Diktyon number 37610, but only the third item in the set is described online at https://pinakes.irht.cnrs.fr/ under this number.
 ${ }^{2}$ Inmaculada Pérez Martín (per litteras) has identified the copyist of MS 31/1 as Makarios (RGK III, nr. 398, referring to Vat. gr. 989 [Xenophon and other historians and tacticians, Nonnos; Diktyon 67620]; on this manuscript, see now I. Pérez Martín, "Enseignement et service impérial à l'époque paléologue :à propos de la formation des serviteurs des empereurs", Travaux et Mémoires 25 [2021], Appendix 1), a collaborator of Nicephoros Gregoras' who partly penned two manuscripts similar in content (identified in I. Pérez Martín, "Un escolio de Nicéforo Gregorás sobre el alma del mundo en el Timeo (Vaticanus Graecus 228)", MHNH 4 [2004], 197219, at 209 and n. 45): Laur. Plut. 28.20 (astrological miscellany, description in R. Caballero Sánchez, "Historia del texto del Comentario anónimo al Tetrabiblos de Tolomeo", MHNH 13 [2013], 77-198, at 112-115; Diktyon 16201), ff. 1r-115v and 118r-267v, and Vat. gr. 1087 (Diktyon 67718), ff. 5r-27v (here Theodoros Metochites, Astronomikē Stoicheiōsis).
 ${ }^{3}$ The extracts from the Almagest are found in ff. 1r-7r, Alm. III.1, 191.15-209.16 Heiberg; ff. 7r-12v, Alm. IV.1-3, 265.9-280.19 Heiberg.

[^1]: 4 This treatise is on ff. 13r-19r, which contain Hyp. 1-14, 70.3-104.23 Heiberg; this copy

[^2]: ${ }^{17}$ This is shown in Acerbi, Manolova, Pérez Martin (cit. n. 12).

[^3]: ${ }^{18}$ I adopt the punctuation rules which I normally use in editing Greek and Byzantine mathematical texts and that are expounded in F. Acerbi, The Logical Syntax of Greek Mathematics, Heidelberg - New York 2021, sect. 1.4. In particular, such rules prescribe that consecutive steps of an algorithm are separated by an upper point; that a hiatus is marked by a full stop; that commas separate the principal clauses of a procedure and the result of a multiplication from the two factors.
 ${ }^{19}$ Passover falls on the $14^{\text {th }}$ day of Nisan, the first month of Spring. On the early history of the Computus as a genre, see A. A. Mosshammer, The Easter Computus and the Origins

[^4]: ${ }^{23}$ P. Tannery (ed.), Diophanti Alexandrini opera omnia cum Graeciis commentariis, I-II, Lipsiae 1893-95, I, 2.3-13
 ${ }^{24}$ Compare Tannery, "Notice" (cit. n. 15), 86.6-15 and 118.3-10, and Tannery, Diophanti opera (cit. n. 23), I, 2.3-17 and 2.3-13, respectively.

[^5]: ${ }^{27}$ My notation is as follows: I use the signs $1_{p}, 1_{F}, 1_{M}, 1_{A}, 30_{S}$, etc., for January 1, February 1, March 1, April 1, September 30, etc. The crucial operation in a Computus is finding the remainder of the division of a number x by a number n. In modern terms, this is the "modulo" reduction, whose sign is " $x \bmod n$ ". The sign " $x \equiv y(\bmod n)$ " (read " x is congruent to $y \bmod$ ulo n ") signifies that numbers x and y, once divided by n, yield the same remainder. The sign $\llbracket x \rrbracket$ denotes the floor (integral part) of number x, namely, the nearest integer (0 included) less than or equal to x. A sign like $\sum_{k=J}^{X-1} n_{k}$ stands for the sum of a sequence of numbers n_{k} in which the index k runs from J to $X-1$: this is the sum of the lengths expressed in days of the months from J (anuary) up to an assigned month, denoted by $X-1$. The sum gives null values when the assigned month is January. Counting, for instance the days from 1_{M} is denoted by the sign "-:". The symbolic transcriptions I use in my paraphrase and in my commentary are intended to represent the computational flow faithfully: the initial input is the assumed quantity and this is given within parentheses: (y); a self-contained step of the transcription formalizes a complete clause of the formulated algorithm (note that this means that several operations may be represented); steps in which the output-input chain is not interrupted are linked by an arrow \rightarrow; the operands of a given step are usually written in the same order as they are found in the text; the sign | separates independent steps that follow one and the same step (that is, a branching has occurred); a full stop indicates an algorithmic hiatus or the end of an algorithmic branch; levels of brackets go iteratively from parentheses to braces; the final output is preceded by the sign $=$.

[^6]: ${ }^{31}$ The pattern of embedding is a "lunar calendar", see L. Holford-Strevens, "Paschal Lunar Calendars up to Bede", Peritia 20 (2008), 165-208.
 ${ }^{32}$ See the list in Grumel, La Chronologie (cit. n. 19), 54-55. As a lunar day is eliminated by means of the saltus lunae, the epacts at the end of the $16^{\text {th }}$ lunar cycle year increase by 12 units.

[^7]: ${ }^{36}$ Computi that present algorithms in which the age of the Moon is calculated by reducing modulo $29 \frac{1}{2}$ include those by Maximus the Confessor, sect. I. 28 and the eighth algorithm compiled in sect. III.8, in PG XIX, 1245 and 1269; Psellos (dated 1091/2), sect. I.15, in G. Redl, "La

[^8]: ${ }^{39}$ In September, the calendar year (and hence the indiction) changes, but the lunar cycle year remains the same, which means that the same "base" must be used.
 ${ }^{40}$ This aspect is frequently overlooked in analyses of the technical basis of Computi. This point is discussed in Holford-Strevens, "Paschal Lunar Calendars" (cit. n. 31).

[^9]: ${ }^{41}$ For this algorithm, see Anonymus 892, sect. 25; Anonymus 1092B, sect. 5, in Karnthaler, "Die chronologischen Abhandlungen" (cit. n. 30), 9.159-170; Anonymus 1377, sect. 7, in PG XIX 1324-1328, where the algorithm is also described in detail. Latin computistic treatises include Bede, De Temporum Ratione xxiv and the Computus printed in PL CXXIX, 1305. The connection with Western sources is also made explicit in Theophilaktos' unpublished Computus in Hamb., SUB, in scrin. 50a (Diktyon 32373), f. 11v ($\mu \dot{\alpha} Ө \eta \mu \alpha$ тoṽ $\psi \eta ́ \varphi o u ~ \tau \tilde{\omega}<v>\Lambda \alpha \tau i v \omega<v>\dot{\varepsilon} \rho \mu \nu v \varepsilon v \theta \dot{\varepsilon} v$
 Neugebauer, HAMA (cit. n. 29), 830, and Neugebauer, Ethiopic Astronomy (cit. n. 19), 176-177.

[^10]: ${ }^{44}$ See, for instance, Anonymus 892, sect. 12; Anonymus 1092A, sect. 4, in Karnthaler, "Die chronologischen Abhandlungen" (cit. n. 30), 5.42.

[^11]: ${ }^{47}$ The floor function is particularly effective in formalizing leap year computations. In fact, if y is a year in the Byzantine world era or in the era $\mathrm{AD}, \llbracket(y \bmod 4) / 4 \rrbracket$ singles out leap yearswhich in both eras are such that $y=4 k$ for some integer k-because $y \equiv 1,2,3$ or $4(\bmod 4)$, and $\llbracket 1 / 4 \rrbracket=\llbracket{ }^{2} / 4 \rrbracket=\llbracket{ }_{4}^{3} / 4 \rrbracket=0, \llbracket 1 \rrbracket=1$. As taking the floor of a division involves taking its integer quotient by disregarding the remainder, $\llbracket y / 4 \rrbracket$ is the total number of leap years since epoch.
 ${ }^{48}$ See Anonymus 892, sect. 12; Anonymus 1079, sect. 2, in Mentz, "Beiträge" (cit. n. 38), 78; Anonymus 1183, sect. 8; Anonymus 1256, sect. 9; Matthew Blastares, in Rhalles, Potles, इúv $\tau \alpha \gamma \mu \alpha$ (cit. n. 30), 418; Isaac Argyros, in PG XIX, 1301 and 1304.

[^12]: ${ }^{52}$ See Anonymus 1247, sect. 24, in Schissel, "Chronologischer" (cit. n. 30), 110; Anonymus 1256, sect. 10; Isaac Argyros, in PG XIX, 1305 and 1308; Anonymus 1377, sect. 9, in PG XIX, 1328-1329.
 ${ }^{53}$ The difference between counting and reckoning is usually formulated as the difference between inclusive and exclusive reckoning.

[^13]: ${ }^{54}$ As Sunday is the first day of the week, this statement is inaccurate.

[^14]: ${ }^{55}$ Tannery, "Notice" (cit. n. 15), 134.23-138.27, both verbatim and after rewriting.
 ${ }^{56}$ Rhalles, Potles, $\Sigma v^{5} v \tau \alpha \gamma \mu \alpha$ (cit. n. 30), 418-419.
 ${ }^{57}$ See the discussion in O. Schissel, "Die Osterrechnung des Nikolaos Artabasdos Rhabdas", Byzantinisch-neugriechische Jahrbücher 14 (1938), 43-59.

[^15]: ${ }^{58}$ Similar algorithms are found, for instance, in George, sect. 3, in Diekamp, "Der Mönch" (cit. n. 34), 29.7-30.2; Anonymus 892, sect. 26; Psellos, sect. I.4, in Redl, "La chronologie" (cit. n. 36), I, 213-215; Matthew Blastares, in Rhalles, Potles, Ev́vtaү $\mu \alpha$ (cit. n. 30), 417 n. 1.
 ${ }^{59}$ This rule shows that the actual terms for Passover are $21_{M} \leq p \leq 19_{A}$; the traditional terms $21_{M} \leq p \leq 18_{A}$ discard April 19 because this date coincides with a gap of the Passover sequence and it is located at the end of the interval (see note 22 above).

