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Abstract

The article presents an edition, a translation, a technical commentary, and a thematic word index of the
Easter Computus authored by the Byzantine mathematichian Nicholas Artabasdos Rhabdas. It is also
shown that this work is preserved as an autograph.
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Resumen

El articulo presenta una edicion, una traduccién, un comentario técnico y un indice de palabras temati-
cas del Computus pascual escrito por el matematico bizantino Nicolas Artabasdos Rhabdas. También se
muestra que esta obra se conserva como autografa.
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THE “THIRD LETTER” OF NICHOLAS RHABDAS:
AN AUTOGRAPH EASTER COMPUTUS*

FABIO ACERBI

That the early-14™ century Byzantine scholar Nicholas Artabasdos Rhabdas (PLP, nr. 1437)
wrote a fully-fledged Easter Computus—and not only the short thematic section includ-
ed in his Rechenbuch, also referred to as the Letter to Tzavoukhes—is known since 1953.
This piece of information is printed on page 81 of volume IX.2 of the Catalogus Codicum
Astrologorum Graecorum, in the description of the manuscript Leeds, University Library,
Brotherton Coll. MS 31/3. Seventy years later, this text is finally published in print.

Brotherton Coll. MS 31/3 is the last of a set of three manuscripts,' all containing
treatises and extracts of astronomical and astrological argument. MS 31/1 comprises
excerpts (accompanied by scholia)? from Ptolemy’s Almagest, Books III and IV,’ and

" I'would like to thank Olivier Delouis for his assistance in Byzantine fiscal matters and for
triggering this Rhabdas-Renaissance, Divna Manolova for drawing my attention to the fact that
the Leeds manuscript contains a work by Rhabdas that is “unedited and [whose] addressee is
unattested”, Inmaculada Pérez Martin for her paleographic expertises, and Alessandra Petrocchi
for her helpful comments on a first draft of this paper. After submitting this study I have come
to know of the edition I. ¥kovpa, “Mia avékdotn emotolr Tov Nikoldaov PaBdd yia tovg ek-
KAnotaoTikovg Aoyaptacpovg’, Nevoig 27-28 (2019-20), 353-399 (but still in press at the time);
this paper does not translate Rhabdas’ Computus, does not contain any technical analysis, does
not set a systematic comparison with parallel algorithms in other sources, does not present the
Leeds manuscripts, and does not recognize Rhabdas’ autography; for these reasons, and after
some hesitation, I decided not to withdraw my paper. Readers will easily grasp the difference
between the two approaches to Rhabdas’ Computus.

! The set of the three manuscripts is assigned the Diktyon number 37610, but only the
third item in the set is described online at https://pinakes.irht.cnrs.fr/ under this number.

> Inmaculada Pérez Martin (per litteras) has identified the copyist of MS 31/1 as Makarios
(RGK III, nr. 398, referring to Vat. gr. 989 [Xenophon and other historians and tacticians,
Nonnos; Diktyon 67620]; on this manuscript, see now I. Pérez Martin, “Enseignement et service
impérial a lépoque paléologue : a propos de la formation des serviteurs des empereurs’, Travaux
et Mémoires 25 [2021], Appendix 1), a collaborator of Nicephoros Gregoras’ who partly pen-
ned two manuscripts similar in content (identified in I. Pérez Martin, “Un escolio de Nicéforo
Gregoras sobre el alma del mundo en el Timeo (Vaticanus Graecus 228)”, MHNH 4 [2004], 197-
219, at 209 and n. 45): Laur. Plut. 28.20 (astrological miscellany, description in R. Caballero
Sanchez, “Historia del texto del Comentario anonimo al Tetrabiblos de Tolomeo”, MHNH 13
[2013],77-198, at 112-115; Diktyon 16201), ff. 1r-115v and 118r-267v, and Vat. gr. 1087 (Diktyon
67718), ft. 5r-27v (here Theodoros Metochites, Astronomiké Stoicheiosis).

* The extracts from the Almagest are found in ff. 1r-7r, Alm. I11.1, 191.15-209.16 Heiberg;
ff. 7r-12v, Alm. IV.1-3, 265.9-280.19 Heiberg.
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his entire Hypotheses Planetarum,* as well as extracts from Theon’s commentary on
the Almagest.” Short astronomical texts are also found in this manuscript.® MS 31/2
contains only the entire commentary of Stephanus of Alexandria on Ptolemy’s Handy
Tables, written by two hands (a collaborator of the main hand copied from the mid-
dle of the first line of f. 20v to the end of f. 21r).” MS 31/3 comprises astrological texts
and Rhabdas’ Computus on ff. 64r-69r (pp. 127-137). The contents of this manuscript
are described in detail in CCAG IX.2® with the exception of the final table (ff. 70v-71r)

* This treatise is on ff. 13r-19r, which contain Hyp. 1-14, 70.3-104.23 Heiberg; this copy
ends with the marginal note Aeinet £€fjg oTiyol 1’ g &nod T@V Mpokeuévwy; this is, in fact, the
partly incomplete version of the treatise carried by Heiberg’s second stemmatic family (Claudii
Ptolemaei opera quae exstant omnia, II, Opera astronomica minora, ed. J.L. Heiberg, Lipsiae
1907, CLXIX-CLXXIV).

> These extracts are found on ff. 24v-27v, in Alm. 1.4, 381.8-392.28 Rome; ft. 27v-33r, in
Alm. 1V.1, 946.16-967.2 Rome; ff. 33v-96v, VI, 273-311.13 (des. mut. Tii NAlakig dtapétpov) of
the 1538 Basel edition. Recall that the Basel edition prints a Byzantine recension of Theon’s com-
mentary; however, MS 31/1 does not carry the text of the Byzantine recension.

¢ These short texts are found on ff. 19v-22r (see numbers II-XI and XIII, des. line 6, in
A. Tihon, “Les scholies des Tables Faciles de Ptolémée”, Bulletin de I'Institut Historique Belge
de Rome 43 [1973], 49-110); ff. 22v-23r, a selection of the preliminary material found in some
manuscripts of the Almagest (edition A. Jones, “Ptolemy’s Canobic Inscription and Heliodorus’
Observation Reports”, SCIAMVS 6 [2005], 53-97); and ff. 23v-24r (see numbers I and XV in the
cited paper by Tihon).

7 'This possibly important—and certainly one of the earliest—witness is not recorded in
the recent edition of Stephanus’ treatise, namely, ]. Lempire, Le commentaire astronomique aux
Tables Faciles de Ptolémée attribué a Stéphanos d’Alexandrie. Tome I. Histoire du texte. Edition
critique, traduction et commentaire (chapitres 1-16) (Corpus des Astronomes Byzantins 11),
Louvain-La-Neuve 2016. In MS 31/2, Stephanus’ treatise (in 38 chapters; it belongs to Lempire’s
class II) occupies ff. 2r-76v. It is preceded by a pinax of the work (f. 1r; f. 1v is blank) and fol-
lowed by the tables of the rising times of the zodiacal signs for the 7" klima and for Byzantium
(f. 77r-v) and by an horoscope, that is, a list of the positions on the ecliptic of the seven planets
and of the ascendant, for the day of Creation (as usual, only the zodiacal signs are marked)
and for the foundation of Constantinople (f. 78r). On these horoscopes, edited in Catalogus
Codicum Astrologorum Graecorum, I-XII, Bruxelles 1898-1953, IX.2, Codices Britannicos, Pars
altera, ed. S. Weinstock, 1953, 176-178 (the editor did not rely on MS 31/2 as his source), see D.
Pingree, “The Horoscope of Constantinople”, in Y. Maeyama, W.G. Salzer (eds.), [IPIXMATA.
Naturwissenschaftsgeschichtliche Studien. Festschrift fiir Willy Hartner, Wiesbaden 1977, 305-
315. Marginalia of hands different from the main copyist are on f. 61, note dated AM 6978 [=
1469] December 29, and on f. 76v, where one finds an undated note. The quire composition of
MS 31/2, written on 26-31 lines per page, is 9x8, 1x8 - 1, the quire numbers are marked in the
lower external corner of the first and of the last page of each quire (number (' is wrongly locat-
ed on f. 49r).

8 CCAG, IX.2 (cit. n. 7), 78-81. The dimensions are mm 220x150, there are 25-31 lines
per page. The hands are distributed as follows (I. Pérez Martin, per litteras). Hand 1: ff. 1r-6v,
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which, by employing Indo-Arabic numerals of the Western form,’ lists all numbers
from 11 to 100 along with one of their factorizations in two numbers noted as parts
(as for instance '/; three factors are indicated only for the numbers 96 and 98). In this
table, prime numbers are marked by a special sign; they are further listed in a small
table on f. 71v. I have not yet been able to understand the rationale behind the small
table on f. 70r.

These three manuscripts were copied in the first half of the 14™ century. In MS
31/3, the example given in the astrological text on f. 41v carries the date AM 6812 [=
1304] March 12'; this date agrees with the fact that several pages of the manuscript are
written in an imitative script.'! In MS 31/3, Rhabdas’ Computus comes straight after the
astrological collection, and is, in fact, an autograph of him, as a very recent finding con-
firms."? Rhabdas also penned most of MS 31/2; it is likely that he himself assembled this
astronomical and astrological miscellany by adding his own transcriptions to pre-ex-
isting material. MS 31/3 was most likely available within Nicephoros Gregoras’ entou-
rage, since it has been very selectively corrected and annotated by Isaac Argyros, one of

81, 11v-12r, 131-v, 151r-23v, 24v-25r, 261-271, 28v-291, 381, 41r-42r15; hand 2, imitative: ff. 7r-v,
8v-11r, 12v, 14r-v, 24r, 25v, 27v-28r, 29v-37v, 38v-40v, 42r15-63v; hand 3 (Rhabdas): ff. 64r-69r.
Marginalia and corrections on ff. 1r-2r, 4r-v, 131, 18r, 41v, 63V, by Isaac Argyros. On f. 66v, lower
margin, in red ink, numerals ,¢Don xn ok Tk¢. In Rhabdas’ text, some brief parts have been re-
written by a later hand to cover water damage.

? According to Alessandra Petrocchi, whom I thank for the suggestion provided, some of
these numeral-forms are common to those found in manuscripts written in medieval Latin and
early Italo-Romance vernaculars and dating from the 13™ and 14" centuries.

' To denote dates, I adopt the astronomical convention era - year — month - day.

' On imitative script in scientific manuscripts, see E Acerbi, A. Gioffreda, “Manoscritti
scientifici della prima eta paleologa in scrittura arcaizzante”, Scripta 12 (2019), 9-52. This style of
writing was almost uniquely used in the period 1260-1310.

"2 The finding involves a document of the Chilandar monastery dated 1323 and redacted
by an imperial surveyor who signs himself as Nicholas Rhabdas; this document will be publi-
shed in O. Delouis, M. Zivojinovi¢, Actes de Chilandar. II. De 1320 & 1335 (Archives de I'Athos
24), Paris, forthcoming, nr. 90. Once the identification with our Rhabdas was confirmed by
R. Estangilii Gomez, Estangiii Gomez himself, I. Pérez Martin and I conducted a cross-exa-
mination and were able to find Rhabdas’ hand in the Leeds manuscripts, in his own (incom-
plete) square root table presented to Nicephoros Gregoras, now preserved in the manuscript
Heidelberg, Universititsbibliothek, Pal. gr. 129 (mainly 14" century; Diktyon 32460), ff. 11v-12r,
and in Par. gr. 2650 (Diktyon 52285), ff. 147r-150v (ternion 147-152, the rest is blank apart
from some monocondyla on f. 152r). The Paris manuscript exhibits another autograph work
by Rhabdas, for ff. 147r-150v are the only extant witness of the grammar he composed for his
own son Paul Artabasdos: see E. Acerbi, D. Manolova, I. Pérez Martin, “The Source of Nicholas
Rhabdas’ Letter to Khatzykes: An Anonymous Arithmetical Treatise in Vat. Barb. gr. 4, Jahrbuch
der Osterreichischen Byzantinistik 68 (2018), 1-37, n. 6 at 2-3.
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Gregoras’ pupils and a prominent figure among the mathematically-minded scholars of
the second half of the 14" century.”

The structure of this paper is as follows: in section 1, I introduce Rhabdas and his
Computus, in section 2, I edit the Computus, translate it, and explain its content in a para-
phrase and in a running commentary. In the paraphrase, I also present a symbolic tran-
scription of the computational sections. The Appendix contains a thematic word index.

1. Introducing Rhabdas’ Computus

Nicholas Artabasdos Rhabdas of Smyrna was a high-brow imperial functionary and schol-
ar in Constantinople around 1320-42; he was connected with Nicephoros Gregoras and the
circle of Maximus Planudes’ pupils. His administrative role has been clarified by the same
recent finding that has also led to the identification of his handwriting."* Rhabdas had a
strong interest in mathematical matters; among other things, he wrote two logistic treatises
in epistolary form: these are an arithmetic primer on the elementary operations with Indo-
Arabic numerals (the so-called Letter to Khatzykes) and a Rechenbuch (the so-called Letter
to Tzavoukhes). The latter also includes a short computistical section;'" as in most Computi
containing worked-out examples, this section also calculates the date of Easter for a year
that is stated to be the current year, and the text can thus be dated to 1341. For the same
reason, the autograph Computus in MS 31/3 can be dated to 1342.

In writing his Computus, Rhabdas adopted the same literary form he employed
in writing the other two mathematical works mentioned above: a letter addressed
to a friend.'® It is plausible that Rhabdas’ Computus (which I shall also call Letter to
Myrsiniotes) is the last of the series of three mathematical letters we know he authored;

" On Argyros see A. Gioffreda, Tra i libri di Isacco Argiro (Transmissions 4), Berlin -
Boston 2020.

'* On Rhabdas’ life and works (he wrote other texts) see the updated synthesis in Acerbi,
Manolova, Pérez Martin (cit. n. 12), 2-6, and the new data collected in F. Acerbi, “A New Logistic
Text by Nicholas Rhabdas”, Byzantion 92 (2022). It goes without saying that Rhabdas’ institu-
tional role as a functionary of the fiscal administration fits remarkably well the contents of his
Letter to Tzavoukhes.

5 Editions of these two Letters are available in P. Tannery, “Notice sur les deux lettres
arithmétiques de Nicolas Rhabdas”, Notices et extraits des manuscrits de la Bibliothéque Nationale
32 (1886), 121-252, repr. Id., Mémoires scientifiques, IV, Toulouse — Paris 1920, 61-198, on pages
86-116 (Letter to Khatzykes) and 118-186 (Letter to Tzavoukhes). The computistical section in
the Letter to Tzavoukhes is on pages 134.23-138.28.

!¢ After Rhabdas, this format of scientific writing was also adopted by Isaac Argyros, in a
short geometric metrological text (the Letter to Kolybas) and in his Easter Computus (the Letter
to Andronikos Oinaiotes). See the discussion in Pérez Martin, “Enseignement” (cit. n. 2).
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what is certain is that the Letter to Myrsiniotes is later than the Letter to Tzavoukhes.
Rhabdas’™ authorship is declared in the title of the Letter to Myrsiniotes, whose struc-
ture is identical to the structure of the title of the other two Letters. In our case, the ad-
dressee is an otherwise unknown Demetrius Myrsiniotes who, according to the title,
was an elder, and particularly dear, friend of Rhabdas’. Were the title missing, Rhabdas’
authorship would still be unquestionable because his autograph Computus begins with
the same verbatim extract from the beginning of Diophantus’ Arithmetica which opens
the other two Letters. Moreover, in the final section of his autograph Computus Rhabdas
reproduces a portion of his own brief Computus included in the Letter to Tzavoukhes;
the reused passage provides an algorithm that allows one to calculate the date of Easter
without having to compute that of Passover before. To sum up, Rhabdas expanded the
computistical section of his own Letter to Tzavoukhes into a fully-fledged Computus.

Rhabdas” Computus presents standard features: it explains how to calculate the fol-
lowing items: indiction, solar, and lunar cycle years (sects. 2-5), the “base” of the Moon
(sect. 6), the age of the Moon on a specific date (sect. 7), the epacts of the Moon (sect. 8),
knowing its age, the visibility of the waxing and waning Moon (sect. 9), the date of Passover
(sect. 10), the weekday on which Passover falls, and, consequently, the date of Easter (sect.
11), what years are leap years (sect. 12), the date of Meat-Fare Sunday (sect. 13), the du-
ration of Apostles’ Fast (sect. 14), and, finally, a paschalion Meat-Fare Sunday - Easter
— Apostles’ Fast, in this very order and, unlike the algorithm in sect. 11, without using
Passover (sect. 15). Rhabdas’ Computus is purely technical; only sects. 2 and 13 contain
substantial discursive sequences, namely on the meaning and the origin of indiction (an
excursus that tallies with Rhabdas’ role in the Byzantine administration) the former, and
on the disagreement over the date of Easter among some regional Christian churches the
latter. All sections of this Computus present worked-out examples; apart from a single slip
of pen, all given calculations are correct. However, as I shall point out in the next sections,
the Computus contains some serious methodological mistakes, thereby suggesting that
the material for which Rhabdas claims original authorship was, in fact, drawn from other
sources. This is not surprising, as in his Letter to Khatzykes Rhabdas also silently appropri-
ated an anonymous treatise written several decades earlier."” I have not been able so far to
locate the Computus which has been Rhabdas’ source for his Letter to Myrsiniotes.

2. Rhabdas’ Computus: Edition, Translation, and Commentary

The manuscript containing Rhabdas’ text presents only one copying mistake and four mi-
nor errors that can be attributed to distraction; there are also some corrections. In the

17 This is shown in Acerbi, Manolova, Pérez Martin (cit. n. 12).
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edition which I present in this section I have retained the original accents of proclitics and
enclitics. I have decided not to keep the original punctuation for the following reasons:'® (1)
in many occurrences, it is not possible to ascertain whether a point is marked by the author
as upper or lower (and in some cases, even distinguishing between a comma and a point is
impossible); (2) Rhabdas is not consistent with punctuating the algorithms: Computi use
formulaic expressions and the author’s inconsistency is sometimes self-evident; (3) study-
ing Computi as a textual corpus involves comparing the algorithms they contain: uniformi-
ty in punctuation is therefore required. Other editorial conventions are: I have maintained
adverbial expressions written in one single word as they appear; “aberrant” verb forms such
as evp€0n (the augment is missing) are not corrected; numeral letters standing for integers
are not marked by an apex; ordinals that in the text are given as numeral letters are written
with a raised ending; according to the context, dates are treated as integers or as ordinals.

I have subdivided the text into thematic sections, most of which coincide with
Rhabdas’ paragraphs. The sequences that Rhabdas appropriated from Diophantus’
Arithmetica (in sect. 1) or that he reproduced from his own Letter to Tzavoukhes (in the
title and in sect. 15) are underlined. Each section presents the Greek text, its translation,
preceded by a short title in italics, a paraphrase, and a commentary. The translation is
faithful to the structure of the Greek text, especially within algorithms, where, however,
I traslate the aorist tense by a present tense; readers will find in Rhabdas’ Computus a
fine specimen of immoderate—yet perfectly idiomatic—use of emphatic kai. A thematic
word index is found in the Appendix. The paraphrase and the commentary are printed
in reduced font size and are preceded by the titles Par and Comm, respectively. My com-
mentary to Rhabdas” work presents the context, clarifies some ambiguous points, and
gives references to similar algorithms found in published Computi. The computational
sequences are expressed in symbolic form.

Before presenting the text, some preliminary explanation of the determination of
the date of Easter seems appropriate. The determination of the date of Easter in an as-
signed calendar year is traditionally reduced to finding the date and the weekday for that
very year upon which the Jewish festival of Passover falls. This corresponds to the 14™
day of a schematic lunar month and must occur on or straight after the Spring equinox,"

'8 T adopt the punctuation rules which I normally use in editing Greek and Byzantine math-
ematical texts and that are expounded in E Acerbi, The Logical Syntax of Greek Mathematics,
Heidelberg — New York 2021, sect. 1.4. In particular, such rules prescribe that consecutive steps of
an algorithm are separated by an upper point; that a hiatus is marked by a full stop; that commas
separate the principal clauses of a procedure and the result of a multiplication from the two factors.

1 Passover falls on the 14™ day of Nisan, the first month of Spring. On the early history
of the Computus as a genre, see A. A. Mosshammer, The Easter Computus and the Origins
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whose date was fixed, as far as computistical matters are concerned, to March 21. Easter
is the first Sunday after Passover; if Passover falls on Sunday, Easter is celebrated on the
Sunday next thereafter.”® Since Passover occurs on a fixed day of a specific lunar month,
its date and the date of Easter vary from year to year. The dates of all other festivals in
the annual Christian calendar which depend on Easter must vary with it, which explains
why the Easter date must be calculated in advance. In order to determine it, it is essen-
tial to know—for the given year and possibly for a period of time—the beginning of
each lunar month, that is, the date of the new Moon. This was ascertained by means of
reasonably accurate approximations for the motions of the Sun and of the Moon, called
“cycles”; in the case of the Moon, a cycle is a time interval after which the sequence of
new Moons repeats itself on the same dates. In Computi, “Passover” is therefore the 14"
day of a schematic lunar month in a lunisolar cycle (henceforth “lunar”).* In the middle
and late Byzantine period, a 19-year lunar cycle was almost unanimously adopted (see
below for more details).

Once a cycle is adopted, all new Moons in it occur on fixed dates, which entails that
the date of Passover in each year of the cycle is also fixed: a cycle uniquely determines a
sequence of Passover dates,”” which repeats with the periodicity of the cycle. Once the

of the Christian Era, Oxford 2008; still useful although poorly organized is V. Grumel, La
Chronologie (Traité d’Etudes Byzantines 1), Paris 1958, 1-128. The Alexandrian Computus,
from which the tradition of the Byzantine Computus stems, has been masterly reconstructed
in O. Neugebauer, Ethiopic Astronomy and Computus (Sitzungberichte der Osterreichischen
Akademie der Wissenschaften 347), Wien 1979, and O. Neugebauer, Abu Shaker’s Chronography
(Sitzungberichte der Osterreichischen Akademie der Wissenschaften 498), Wien 1988. See
also the discussion in F. Acerbi, “Byzantine Easter Computi: An Overview with an Edition of
Anonymus 8927, Jahrbuch der Osterreichischen Byzantinistik 71 (2021), where I edit what I have
called Anonymus 892 and where the reader finds a list of the several Anonymi I shall cite in the
following footnotes.

0 To cite a source near to Rhabdas’ times for instance, four “necessary conditions” (dto-
ptopoi; I am pretty sure that Barlaam is alluding to the mathematical meaning of the term: see
Acerbi, The Logical Syntax [cit. n. 18]. sect. 4.2.1) for the Easter date are emphasized by Barlaam
in his Computus: A. Tihon, “Barlaam de Seminara. Traité Sur la date de Paques”, Byzantion 81
(2011), 362-411, at 376 (sect. 22).

2! A lunar cycle is “lunisolar” because the occurrence of a new Moon depends on the po-
sition of the Sun. As lunar cycles are only approximations of the actual lunar motion and the
length of the synodic month varies, the actual date of Passover and the computistical Passover
may not always coincide; in Rhabdas’ times this lack of synchronization amounted to about two
days (see sect. 13).

?2 Given the fact that a lunar month extends over 30 days and that the lunar cycle adopted
in Byzantine Computi lasts 19 years, there are gaps in the sequence of the dates of Passover: see
Rhabdas’ table at the end of sect. 15.
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date of Passover is known, one has to compute the weekday upon which it falls; the date
of Easter is then easily determined. All the computations involved in the above-men-
tioned steps were formalized in standard discursive patterns which I refer to as “algo-
rithms”. Very simple algorithms compute the lunar cycle year of any assigned year in a
given era (see sects. 2 and 5 in Rhabdas’ Computus); knowing the lunar cycle year, the
date of Passover can then be calculated (sect. 10). Other algorithms compute the week-
day of any assigned date in any given year (sects. 3, 4, and 11). Combining these data,
the date of Easter is easily found (again sect. 11); from the date of Easter, the dates of all
other movable feasts can be computed (sects. 13 and 14). Any Computus, and Rhabdas’
Computus in particular, consists of a collection of such algorithms; authors sometimes
supply alternative algorithms (as for Rhabdas, see sect. 15) and algorithms for comput-
ing other quantities which are differently relevant to the subject-matter (compare sects.
6, 8, and 12 to sects. 7 and 9).

Title

|... MéBodot Sidgopot éktebeioal mapd dplbuntikod kal yewuntpov NikoAdov Zpvpvaiov
Aptapacdov oD Papda aitnoet 60tov Anpuntpiov 100 Mupowviwtov, mept Tig ivSikTov,
10D KUKAOL T0D 1Aiov, TOD KVKAOL TG oeA VNG, ToD Bepehiov avTig, TG EVPEoEWS TOV
NUEPOV adTAC, TG QADOoEWE TOV WPDV AT, €Tt T¢ Tiepl TG AdKpew, TOD VOULKOD
daokaliov, TAg e0péoewg TG NUEpag TovToL Kb’ fjv yivetar, Tod BiotEtov, Tod evoePfoig
[Taoxa T@v Xprotiavdv Kal tfig év T® Oépet yivopévng Nnoteiag T@v dyiwv Amootolwy.

Several algorithms set out by the arithmetician and land-surveyor Nicholas Artabasdos
Rhabdas of Smyrna, at the request of diviner Demetrius Myrsiniotes, about indiction,
the cycle of the Sun, the cycle of the Moon, its base, the finding of its days, the hours of
its visibility, and further, about Meat-Fare, Passover, the finding of the day on which this
occurs, the leap year, the sacred Easter of Christians, and the Apostles” Fast that occurs
in Summer.

1

Thv dndwow 1@V mapd cov {ntndéviwy, mobewvoTate kai ylvkvtaté pot mpeoPutepe
KDpL AnunTpLe, YWWwokwv og omovdaiwg €xovta kai katahdyov pabeiv, dpyavdoat Ty
ueébodov EmelpdOny, dp€apevog a@” dv ovvéotnke Td mpdyuata Bepeliwy, drootiow
Kai apadodvat oot TN ToLTwV eVpeoiv te Kal pdnotv. iowg ugv ovv dokel TO mpdyua
dvoyepéotepov, émeldn) uNmw yvwpiudv €0t — SuoéAmiotol ydp giot mpog katdpbwoiv al
TOV dpyouévwv yoyal — duwg §” edkatdAnnTov oot yeviioetat Sid te iy ony mpobupiav
Kat TNy éuny dnddelfv- Tayeia yap eig udbnow émbupia npoolaPodoa Stdayrv.
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Introduction

As I know that the clarification of the things you have been seeking is something you,
my bitterly longed for and dearest sir Demetrius, earnestly strives to learn on a rational
basis, I tried, beginning from the bases on which the subject-matter rests, to give shape
to a systematic exposition in order to lay down and to transmit to you the way of both
finding and learning these things. Then, the subject-matter may seem particularly dif-
ficult since it is not yet familiar—for the beginners hardly feel hopeful for a successful
accomplishment—still, it will become easily apprehensible for you thanks both to your
eagerness and to my rigorous exposition, for eagerness enriched by teaching runs fast
towards learning.

Comm. The introductory section is almost entirely drawn verbatim from Diophantus’
Arithmetica.” The same extract also opens the Letter to Tzavoukhes and, with the exception of
the length of the portions excerpted, the Letter to Khatzykes.** Apparently, Rhabdas considered
using this quote in his grammatical Letter to Paul Artabasdos unsuitable. Nothing else is known
about Demetrius Myrsiniotes (whose appellation 6vtng “diviner” is perplexing); however, two
Myrsiniotes are recorded as PLP, nr. 92694 and 92695.

2

Kai mpdtov ye Aektéov mepi ivdiktov- Ti 0Tty (vaikTog, kai Ti TO Tavtng dvopa dnhoi, kal
n60ev fip&ato kal mapd Tivog. TO TAG ivdikTov Gvopa Aativikov €0Tt, onpaivet 8¢ §vo, TV
Te ApXMNV Kal THV EMVEUNOLV. THV HEV ApXTV OLOTL TOD TAVTOG KOO0V KATA TNV €IG TOV
Kptov tod fikiov eioéhevotv t0de 10 mav édnpovpyndn kai ¢§ odk dvtwv mapnxOn mapa
100 T@V OAwV aptoTotéxvov Beod, 6 81 {dStov pijva Mdptiov el dvopalopey, pufjva 8¢
Aéyopev TOUTWV €KAOTOV €K TOD TG 0EANVNG OVOUATOG — IV Yap 1 oehnvn Aéyetal, Kol
4o TavTnG Kal oi Tod fAiov pijveg TV mpoonyopiav éoxnkaot —, kai 6Tt 6 pev fjAtog ¢’
€KAOTW unvi fj kai Aeiovt fj kal EAattove Staotrpatt &v Siépxetat (dlov, émeldn odk eig
foa Tpunpata tépvel T dwdekatnuopta AN el dvioa Std 1O TOV TOUTOV KUKAOV EKKEV-
Tpov eivatl PO TOV {wdiakov, 1) 8¢ oehnvn kad” Ekaotov uijva ta (f Stépyeton {ddia, Kkat
O TodT0 émekpdtnoev 1} ToD Xpovov dpxr) yiveobat (kabwg 6 Beonéotog kai péyag mpo-
e1TNG Mwvoiig Nuiv mapadidwot) kata Ty apxnv Tod Maptiov punvog. énekpdrnoe O¢
oUtwg eivat kai AéyeaBat xpovoug ,evk: év 8¢ 1@ tetdptw Etel TG ADYoVOTOL Kaloapog
Bactleiag, mapd TOD TOLOVTOV KAloAPOG 1) TOD XpOVOL HeTeTéON dpxN) KATA TRV TPWTHV

» P. Tannery (ed.), Diophanti Alexandrini opera omnia cum Graeciis commentariis, 1-11,
Lipsiae 1893-95, 1, 2.3-13

* Compare Tannery, “Notice” (cit. n. 15), 86.6-15 and 118.3-10, and Tannery, Diophanti
opera (cit. n. 23), I, 2.3-17 and 2.3-13, respectively.
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Tod ZemteuPpiov punvog St aitiav tolavTny, 6TL ol €Trolol PdpoL Kal oi daopol kal T&
TEAN kai ai Stavopal Katd ToDToV €YilvovTo TOV KalpoV, LeTd TV TV Kapmdv dnAovoTt
ovykopdny. ékdheoav odv Aativol THv Tod xpdvov dpxnv Kai ivdikTov kal ivaikTidva
Kal Emvepnoty Sta To yiveobal katd TOV ToloDToV Katpov Tag TOV Xpnpatwy 800elg Kal
dtavopde- eig mevrekaideka 8 éviavTtovg Thv (vdiktov é0éomioev dviéval, kal EkToTe TA-
Awv dapBavery apxny, fj S 10 péxpt ToooVTOL TAG EMOKEYELS YiveoDal TOV TpaypdTwy
1 Ot 10 TG dooelg £mi TooobTOV KatéxeoDal kol TAALY AVAKAUTTEY TAVTAG TIPOG TOVG
Seomotag. ENaPe |, Toivuy THY dpxnv 1 vdikTog Katd T6 ,£vE €T0g.

‘Ote obv Povhel Thv évioTapévny eidévart ivaikTov, &valvoov €mi TOV Le Ta eVPLOKO-
peva €tn anod tod ,ev ETovg péxpt TOD VOV EVIOTAUEVOL ATIO KTIOEWG KOTUOV ,GwV £TOVG:
Kai eiot ,atg. Aéye odv olTwG: e ¢, ,atv- évaneleipOnoav kai p. kai éAw einé: e B, A-
guevdy oot kai L.

Kat amo g 0Ang 8¢ ovvaywyfig Tdv GAwv & dpxiig ToD kOoUOL £T@V (fiyovy T@V
,GwV) i BovAeL TRV IvOIKTOV €DPETY, AVAAVOOV ETTL TOV LE T ,GWV, Kal Td KATwOeV eDPLOKO-
Heva TOV Le 1) EvioTapévn Ddpyet tvOikTtog. Aéye 8¢ oVTwG: e v, ,G LE V, YV- LE G, Q- AoLTd
L. Kal €01y O TG ivOikToL KUKAOG 1, WG Kal dvewTépw dednAwTat.

"Eyw 8¢ kail ANV £pedpov ovvtopotépay peBodov pdotnv® ovoav pog ebpeaty St
TOUG €vOeG POG TNV TOV aplBpd®v Exovtag duvapy, fjv O kal tpoobijoal ovk dkvnoa
T TapovTL movipatt, f 8¢ oty abTn. KpATNOOV 4o TOV ,GwV ETOV TA V HoOVa, Kal
TovTolg poobeg kai €, dtva SNAOVOTL Kal TePITTEDOVOLY €K TAOV ,GW APALPOVUEVWV
TOV mevrekadekadwv maoc®v- kal yivovtal ve ék ToOTwV- okOTEL Toodkig SOV ToV \te/
aptOpov ékPalelv, kal ePNOELG TAVTWG TPLOGAKLG: TPLG YAP TA LE, HE, OV APALPOVUEVWY
¢k TOV ve katahumavovtat 1, ioa vta Kal Toig mpdTepov eLpedeio ék TOV AAwWV
He@oSwv. kat TadTa eV mepl TG eVpEoewg Kal Kataknyews TG ivdikTov.

* puébodov covvtopoTépay ypaoTny

Indiction and indiction cycle

And of course, one must first speak about the indiction: what is indiction, and what sig-
nifies its name, and from where it took its origin, and by whom. The name “indiction”
is a Latin one, and signifies two things, “beginning” and “apportioning”. <It signifies>
“beginning” because the whole Cosmos when the Sun was entering Aries,” this whole
was created and brought in from non-being by God, best-artificer of the whole, which
sign we do call “month of March”, and we call each of these “month” from the name of
the Moon—for the Moon is also called “month”, and the months of the Sun have also got

> This marked anacoluthon and the long-winded sentence that includes it show that Rhabdas
is partly improvising his Computus. We shall find other syntactic incongruities in the text.
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their denominations from this—and because the Sun traverses one sign each month, or
in a greater or even in a lesser interval, since it does not cut the signs into equal segments
but into unequal ones because its circle is eccentric with respect to the ecliptic, whereas
the Moon traverses the 12 signs each month, and for this reason (exactly as the divine
and great prophet Moses hands down to us) the beginning of the year was retained to
occur at the beginning of the month of March. It was so retained to be and said for 5460
years; however, in the fourth year of the reign of the emperor Augustus, the beginning
of the year was shifted to the first of the month of September by so great an emperor, for
the following reason: the annual tributes, taxes, dues, and regulations were gathered on
this occasion,* as is clear, after the harvest. Then, the Latins called the beginning of the
year both “indiction” and “apportioning” because taxes and regulations on properties are
gathered on such an occasion; <Augustus> decreed that the indiction should go up to
fifteen years and thereafter take again its beginning, either because, after such a period,
tax censuses are revised or because, after such a <period>, taxes are collected and again
returned back to the ruler. Now then, indiction took its beginning in year 5460.

Then, whenever you wish to know the present indiction, resolve out into 15 the
years found from year 5460 up to the now-present year 6850 from the foundation of the
world; and they are 1390. Then, say as follows: 15 <times> 90, 1350; 40 are also left out.
And again, say: 15 <times> 2, 30; there also remain 10 for you.

And if you wish to find the indiction starting from the whole gathering of all the
years from the beginning of the world (namely, 6850), resolve 6850 out into 15, and that
which is found down from 15 turns out to be the present indiction. Say as follows: 15
<times> 400, 6000; 15 <times> 50, 750; 15 <times> 6, 90; 10 as a remainder. And the cy-
cle of the indiction is the 10", as clarified above too.

I have also found another, more concise algorithm, which, for the purpose of find-
ing, is most readily used by those who are insufficiently skilled in numbers, and which, of
course, I did not hesitate to add to the present work too, and which is as follows. Keep only
50 from the 6850 years, and add 5 to these too, which, as is clear, also remain over from 6800
once all pentadecads are removed; and they yield 55 from these; consider how many times
you can cast number 15 aside, and you will always find tree times, for thrice 15, 45, which
once removed from 55, 10 are left out, which are also equal to those found above by means
of the other algorithms. And these things about finding and apprehending the indiction.

%6 As O. Delouis suggested per litteras, these terms “désignent, ainsi que dautres, les impdts
de maniére générique” and “relevent plutot de I'accumulation rhétorique”. Accordingly, I have
translated these four terms with four generic English terms of similar meaning. On the fiscal
terminology in the Palaiologan period, see A. Kontogiannopoulou, “La fiscalité a Byzance sous
les Paléologues (13¢-15¢ siecles)”, Revue des Etudes Byzantines 67 (2009), 5-57.
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Par. The meaning and origin of “indiction” ({v8iktog) is as follows: the meaning of indic-
tion (a “Latin term”) is “beginning” because, as the prophet Moses also attests, Creation took
place when the Sun was entering Aries and the beginning of time was thereby set to this specific
yearly calendar date (an explanation of the meaning and etymology of the noun prv, “month”
but also “Moon’, is also provided), and because the Sun traverses each sign of the zodiac in dif-
ferent times because of the eccentricity of its orbit, whereas each month the Moon traverses all
12 signs; the meaning of indiction is also “apportioning” (émvéunoig). A historical outline of
indiction follows: it was introduced by Augustus in AM 5460, which was the fourth year of his
reign, by shifting the beginning of the year (and hence of indiction) from the Spring equinox to
September 1, when harvest season ends and annual taxes are accordingly collected. The desig-
nation “apportioning” derives from what has been explained. The indiction cycle lasts 15 years
either because, after such a period, tax censuses are revised or because, in the same period, taxes
are collected and returned to the ruler.

The algorithm for finding the indiction cycle year i of an assigned year y in the Byzantine

world era is:?’
(y) > y - 5460 > (y - 5460) mod 15 = i.

A computation is carried out for current year AM 6850 [= 1341/2], and it yields y = 6850
>i=10.

By using directly the world era, the algorithm is:

(y) > ymod15=i.

* My notation is as follows: I use the signs 1,1, 1,,1,, 30, etc., for January 1, February
1, March 1, April 1, September 30, etc. The crucial operation in a Computus is finding the re-
mainder of the division of a number x by a number #. In modern terms, this is the “modulo”
reduction, whose sign is “x mod #”. The sign “x = y (mod n)” (read “x is congruent to y mod-
ulo n”) signifies that numbers x and y, once divided by #, yield the same remainder. The sign
[x] denotes the floor (integral part) of number x, namely, the nearest integer (0 included) less
than or equal to x. A sign like Y%=} n, stands for the sum of a sequence of numbers 7, in which
the index k runs from J to X - 1: this is the sum of the lengths expressed in days of the months
from J(anuary) up to an assigned month, denoted by X - 1. The sum gives null values when the
assigned month is January. Counting, for instance the days from 1, is denoted by the sign “-.".
The symbolic transcriptions I use in my paraphrase and in my commentary are intended to re-
present the computational flow faithfully: the initial input is the assumed quantity and this is
given within parentheses: (y); a self-contained step of the transcription formalizes a complete
clause of the formulated algorithm (note that this means that several operations may be repre-
sented); steps in which the output-input chain is not interrupted are linked by an arrow >; the
operands of a given step are usually written in the same order as they are found in the text; the
sign | separates independent steps that follow one and the same step (that is, a branching has
occurred); a full stop indicates an algorithmic hiatus or the end of an algorithmic branch; levels
of brackets go iteratively from parentheses to braces; the final output is preceded by the sign =.
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A computation is carried out for current year AM 6850 [= 1341/2], and it yields y = 6850
>i=10.

A more concise and very easy algorithm, which Rhabdas claims to be his own discovery
and which he does not hesitate to include in his Computus, is:

(y) > y - 6800 > (y — 6800) + 5 > [(y - 6800) + 5] mod 15 = i.

This algorithm relies on the fact that 5 = 6800 (mod 15). A computation is carried out for
current year AM 6850 [= 1341/2], and it yields y = 6850 > i = 10.

Comm. The indiction is a 15-year cycle introduced in the late Roman empire for taxation
purposes. There are several regional variants of the indiction cycle, and its initial history is com-
plex;*® AD 312/3 is year 1 of the most current indiction cycle. The indiction cycle and the Byzantine
world era are synchronized:* year 1 of the Byzantine world era is also year 1 of the indiction cycle;
moreover, both the Byzantine civil year and the indiction year begin on September 1. Thus, com-
puting the indiction cycle year starting from a year y of the Byzantine world era amounts to finding
the remainder after subtracting 15 units from y as many times as possible; the related algorithm is
the second given by Rhabdas. He also makes indiction to start at AM 5460; of course, since 5460 =
0 (mod 15), we should take this statement to mean that AM 5461 is indiction year 1. That 5460 =
0 (mod 15) also proves that the first algorithm given by Rhandas is correct.

In the third algorithm, as well as in the algorithms for solar and lunar cycle years, the near-
est end-of-century year is removed from a world era year before the modulo reduction is carried
out. Since 6800 = 5 (mod 15), 6800 = 24 (mod 28), and 6800 = 17 (mod 19), the algorithms for
the indiction, solar, and lunar cycles entail not only the shift y > y - 6800, but adding the above
numbers as parameters to compensate for the shift. Below is a table of the values of i, s, and m
for the end-of-century years that are relevant to Byzantine Computi*:

8 A detailed study is by S. Bagnall, K.A. Worp, Chronological Systems of Byzantine Egypt,
2™ ed., Leiden - Boston 2004; Grumel, La Chronologie (cit. n. 19), 192-206 provides a brief
account and explains the regional variants. See also the account in Mosshammer, The Easter
Computus (cit. n. 19), 20-24.

* An Era is a non-cyclic count of calendar years starting from a given year 1, called “epoch”.
The epoch of the Byzantine world era (ta ano kticewg koopov €tn “the years from the founda-
tion of the world”) is BC 5509 September 1, which falls on a Saturday; years are Julian years. On
eras, see the synopsis in Grumel, La Chronologie (cit. n. 19), 207-226 and 279-296; see also O.
Neugebauer, A History of Ancient Mathematical Astronomy, Berlin — Heidelberg - New York 1975,
1143 s.v., and especially 1064-1067 and 1074-1076 (with bibliography), and the dedicated sections
in Neugebauer, Ethiopic Astronomy (cit. n. 19), and Neugebauer, Abu Shaker’s (cit. n. 19).

% Other Computi in which end-of-century years are subtracted—despite his claim for orig-
inality, many of them precede Rhabdas’ times—are Anonymus 892, sect. 7; Anonymus 1092A,
sect. 1, and 1092B, sect. 1 (both for indiction only), edited in E P. Karnthaler, “Die chronologis-
chen Abhandlungen des Laurent. Gr. Plut. 57, Cod. 42. 154-162", Byzantinisch-neugriechische
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6200 6300 6400 6500 6600 6700 6800 6900
i 5 0 10 5 0 10 5 0
s 12 0 16 4 20 8 24 12
m 6 11 16 2 7 12 17 3
3

[Tepi 8¢ kOKAov HAiov Kkal oA VG prTéov Wde. O Tod NAiov khKAOG dpXeTat pev &mod Tiig
npwtng 100 OkTwPpiov unvog, dvépxetal 6¢ €ig XpOVOLG K1), Kail TAAY AapBavel dpxnyv.
Ti 00V €0Tv & kOKAOV? fHAiov Aéyopev- kai Ot Ti 0 OktwPprog unv Bepéiog OV T00
fAiov AéyeTtal kOKAWY, kal katd Tiva Adyov oi Tod fAiov kvkAoL k1) €lol kal ov TAeioveg
ovd’ éAdoooveg, Opoiwg kat dia Tiva Adyov 6 Tavvovdaplog iy Oepéhiog T@v Tig oeAnvng
KOKAWV Aéyetal, kai i Tt oi Tfig oeAnvng kOKAoL 10 eiol, 0Ok ebkalpov VOV Aéyewy év Td
TIAPOVTL TOVG OLVTOWIQA XPWHEVOUG.

*lege 6 kOKAOG

Solar and lunar cycles

On the cycle of the Sun and of the Moon one must say in the following way. The cycle of
the Sun begins on the first of the month of October, reaches to 28 years, and takes again
its beginning. Then, we say what is the cycle of the Sun; and why the month of October is
called “base” of the cycles of the Sun, and for what reason the cycles of the Sun are 28, and
not more nor less, similarly, for what reason the month of January is also called “base”
of the cycles of the Moon, and why the cycles of the Moon are 19, it is out of place to say
now; for in the present <exposition> we aim at conciseness.

Comm. Solar cycles of equal length exhibit the same sequence of pairings between dates
and weekdays. As Julian years model the tropical year of 365"/, days (and therefore an intercala-
ry day is added every fourth year, see sect. 12), the number of weekdays and 4 are prime to one
another, and neither 365 or 366 are multiples of 7, therefore the shortest solar cycle consists of
7x4 = 28 Julian years. Once an assigned sequence of calendar years is divided into consecutive

Jahrbiicher 10 (1933), 1-64, at 5.1-3 and 8.136-138, respectively; Anonymus 1247, sects. 2, 6,
8, edited in O. Schissel, “Chronologischer Traktat des XII. Jahrhunderts”, in Ei¢ pvrunv Zm.
Adpmpov, ABfjvar 1935, 105-110, at 106-107; sects. 2-4 of the unpublished Anonymus 1256 in
Vat. Pal. gr. 367 (Diktyon 66099), ff. 85r-88r; Anonymus 1273, sect. 3, edited in edited in F.
Buchegger, “Wiener griechische Chronologie von 1273”, Byzantinisch-neugriechische Jahrbiicher
11 (1934-35) 25-54, at 29.19-27; Matthew Blastares (dated 1335), edited in G. Rhalles, M. Potles,
Zhvtaypa T@v Oelwv kal igpdV kavovwy katd otolxeiov, VI, AOfvar 1859, 414-416; Anonymus
1350, sects. 1-3, in O. Schlachter, Wiener griechische Chronologie von 1350, Diss. Graz 1934, 5.3-
6.14; Isaac Argyros’ Computus (dated 1372), sects. 3 and 6, in PG XIX, 1284-1285 and 1292;
Anonymus 1377, sects. 1-2, 4, in PG XIX, 1317 and 1321; Anonymus 1379, in PG XIX, 1329.
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solar cycles, and thanks to the defining property of solar cycles, an algorithm able to determine
the weekday of an assigned date within a solar cycle also calculates it for any year in the assigned
sequence. Synchronizing solar cycles with the current era works out the same problem for any
given calendar year. As is usual in Computi, Rhabdas uses k0xAog to name both the 28-year so-
lar “cycle” and a solar “cycle year” within a solar cycle.

The natural time interval associated with the motions of the Moon and of the Sun as seen
from the Earth is the synodic month, which corresponds to the return of the Moon to the
same position with respect to the Sun. The new Moon is traditionally taken as the boundary
between two consecutive lunar months. A synodic month comprises 29 days and a fraction
of a day that is very close to '/,. Hence, a synodic month of about 297, days covers an interval
of 30 days. The “age of the Moon” is the number of days elapsed since the immediately pre-
ceding new Moon. A “schematic lunar month” is the approximation of the synodic month to
297, days, counted from one new Moon to the next and embedded in a calendar year. Such an
embedding is usually put into effect by alternating lunar months of 30 or 29 days.”’ A “lunar
cycle” is any period after which the sequence of pairings between calendar dates and ages of
the Moon repeats itself.

The 19-year lunar cycle comprises 19 calendar years of 365 days, which equal 6935 days;
these are organized as a sequence of 228 alternating lunar months of 30 and 29 days (= 6726
days) plus 7 “embolismic” (¢upoAipor) months of 30 days each (= 210 days) occurring in specific
years and resulting from the fact that 12 lunar months of 297, days correspond to only 354 days.
The 11 days needed to complete a calendar year of 365 days accumulate (the quantity accumu-
lated at each lunar cycle year is called “epacts’, see sect. 6) until they exceed 30 days; when this
happens, an embolismic lunar month of 30 days is formed, and these days are subtracted from
the accumulated epacts. In this case, a calendar year comprises 13 lunations, and the “lunar
year” has 13 months. Accordingly, a 19-year lunar cycle comprises 228 + 7 = 235 lunar months
of 30 or 29 days. These 235 lunar months comprise 6936 days: the difference of 1 day between
the 6935 days counted on the calendar and the 6936 days counted according to the age of the
Moon is eliminated by inserting a saltus lunae—that is, by increasing the age of the Moon by
one day at some point of its cycle: in Byzantine Computi, the saltus lunae is normally inserted
towards the end of the 16™ lunar cycle year.*> A “lunar cycle year” is a calendar year whose be-
ginning can be shifted with respect to the beginning of the civil (calendar) year. A 19-year cycle
consists thus of 19 calendar years, 19 lunar cycle years, and 19 “lunar years” (the latter of variable
length, as they can be either 12-month or 13-month sequences); these three 19-“year” periods

! The pattern of embedding is a “lunar calendar”, see L. Holford-Strevens, “Paschal Lunar
Calendars up to Bede”, Peritia 20 (2008), 165-208.

*? See the list in Grumel, La Chronologie (cit. n. 19), 54-55. As a lunar day is eliminated by
means of the saltus lunae, the epacts at the end of the 16" lunar cycle year increase by 12 units.
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overlap but differ from one another because different meanings of “year” are involved. In lunar
computations, leap years are disregarded (see sect. 8).

In Byzantine Computi, the solar cycle, the lunar cycle and the reference era are synchro-
nized: year 1 of the Byzantine world era is also year 1 of the solar and lunar cycles. For this rea-
son, the reduction rules from world era years to solar and lunar cycle years are straightforward;*
the algorithms for these very rules are the first given by Rhabdas in sects. 4 and 5. This reduction
is carried out by eliminating whole solar or lunar cycles from the total of world era years.

4

‘Ote odv BovAet TOV TOD fHAiov KOKAOV €idéval, KpATNOoOoV T& ATTO KTIOEWG KOOHOL eVpL-
okopeva €1, kal TadTa HEPLOOV TIapd TOV K1), TOLTEOTL EKPalov O0AKIG EyXwpPel TOV KN,
Kai T& kdtwOev evpebévta TOOTWV O TOD HALoL KUKAOG €0Tiv. DPeilopey 0DV TA ,GWV €Tl
TOV K1 0UTWG, Kal AEYoUeV- KN 0, ,€X- KN W, ,apK- K1 §, pAP* Euervay houmd kad ). kai E0TLV
6 Tod fiAiov kbKAOG 1.

"Ett kat S1a TG Etépag ovvtopwTépag nebBodov tov Tod nAiov kVkAov bpely, moiel
oVTwG. kpatnoov 1a katwhev, wg elpnral, TOV ,Gw ETOV ebploKOpevVa €T, TOVTEOTL TA
V, Kai Tovtolg mpdobeg kai k§, dtiva dnhovott kai évaneheipOnoav amod TOV ,qw dPat-
POVHEVWYV TIapd TOV KN, Kai yivovtat Td Oha 08- €k TobTwv dgele 6odakig SOvr TOV KN,
Kal dvvaocat mavtwg TodTov EkPalelv dig- évameleipOnoav kal i, ioa kai Tadta dvta T
npotépa Hefodw.

*lege p1f
Algorithms for finding the solar cycle year

Then, whenever you wish to know the cycle of the Sun, keep the years found from the
foundation of the world, and divide these by 28, that is, cast 28 aside as many times as
possible, and that which is found down from these is the cycle of the Sun. Then, we re-
move 6850 by 28 as follows, and we say: 28 <times> 200, 5600; 28 <times> 40, 1120; 28
<times> 4, 112; there also remain 18 as a remainder. And the cycle of the Sun is the 18™.

Further, to find the cycle of the Sun by means of the other, more concise, algorithm
too, do as follows. Keep, as said, that which is found down from 6800 years, that is, 50,
and add 24 to these too, which, as is clear, are also left out from 6800 once they are re-
moved by 28, and they yield 74 as a whole; remove 28 as many times as you can from

» Synchronization is not exact since, as seen in sects. 2 and 3, all these years begin on dif-
ferent dates: therefore, segments of two consecutive solar or lunar cycle years belong to one and
the same calendar year. However, Passover, Easter, and most movable feasts of the Christian cal-
endar fall in the “safe” time interval bounded by January 1 and August 31.
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these, and you can always cast this aside twice; 18 are also left out, which are also equal
to <those resulting with> the previous algorithm.

Par. The algorithm for finding the solar cycle year s of an assigned year y in the Byzantine
era is:

(y) > ymod 28 =s.

A computation is carried out for current year AM 6850 [= 1341/2], and it yields y = 6850
>s=18.

A more concise algorithm for finding the solar cycle year is:
(y) > y - 6800 > (y — 6800) + 24 > [(y - 6800) + 24] mod 28 ='s.

This algorithm relies on the fact that 24 = 6800 (mod 28). A computation is carried out for
current year AM 6850 [= 1341/2], and it yields y = 6850 - s = 18.

5

'O 8¢ Tfig oeArvng kbkAog dpxetat amo Tig mpwtng Tod Tavvovapiov unvaog, kal dvépyetal
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Kat domép Tva pilav kai Oepédiov Exopev — yivovtat 0pod &G tadta deele mapd tov 16,
Kai einé- 1pig 10, vi- évameleipOnoav kai 1, ioa kai TadTa Tf) TPOTEPQY HeBOSW.

The lunar cycle, and algorithms for finding the lunar cycle year

The cycle of the Moon begins on the first of the month of January, and reaches to 19
years, and begins again first. Then, whenever you wish to know the cycle of this, keep the
years from the foundation of the world, which are 6850 to-day, and resolve these out into
19, and that which is found down from 19 is the cycle of the Moon. Then, remove them
as follows, and say: 19 <times> 300, 5700; 19 <times> 60, 1140; then, there also remain
10 as a remainder. And the cycle of the Moon is the 10™.

Further, to find the cycle of this with the concise algorithm too, do as follows. Keep,
as said above to you, the small parts of the years, that is, 50, and add 17 to these too—for
these and only these are left out from 6800 once they are divided by 19, which we also
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regard quite as a root and base of sorts—together they yield 67; remove these by 19, and
say: thrice 19, 57; 10 are also left out, which are also equal to <those resulting with> the
previous algorithm.

Par. The lunar cycle begins on January 1 and lasts 19 years. The algorithm for finding the
lunar cycle year m of an assigned year y in the Byzantine era is:

(y) > ymod 19 = m.

A computation is carried out for current year AM 6850 [= 1341/2], and it yields y = 6850
> m = 10.

A concise algorithm for finding the lunar cycle year (the quantity y — 6800 is called “the
small parts of the years” [t OAlya T@V ETdV]) is:

(y) >y -6800-> (y-6800) + 17 > [(y - 6800) + 17] mod 19 = m.

This algorithm relies on the fact that 17 = 6800 (mod 19). A computation is carried out for
current year AM 6850 [= 1341/2], and it yields y = 6850 > m = 10.

6
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An algorithm for finding the base of the Moon

The base of this [scil. the Moon] is taken as follows. Undecuple the cycle of the Moon
what<ever> it is, and add 3, which they call dark <days> because the luminaries have
come to be in the fourth day, to the number resulting from the multiplication too, and
remove how many thirties you find from it, and that which is left down from 30 turns out
to be the base of the Moon.

For example, in the present year 6850, the cycle of the Moon has been found to be
the tenth, and we say that eleven times 10, 110; we also add 3 to these; and together they
yield 113, from which we remove 30 thrice; and 23 are left out. Then, we say that the
now-present base of the Moon is also the twenty-third.
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Par. The algorithm for finding the base (Beuéliog) of the Moon b, at lunar cycle year m is:
(m)>11m->11m+3->(11m+3)mod30="0 .

The additive parameter 3 (the so-called “dark <days>” [d@wTi0TOL]) comes from the fact
that the two luminaries came to be on the fourth day of Creation. A computation is carried out
for current year AM 6850 [= 1341/2], and it yields m =10 > b = 23.

Comm. Each lunar year (= 354 days) is 11 days shorter than a 365-day calendar year; this
difference accumulates. The lunar “epacts” (¢érmaxtai, litt. the “<days> brought upon”) are the dif-
ference that is accumulated at an assigned lunar cycle year within a 19-year lunar cycle (see sect.
8).** Whenever this cumulative difference is greater than 30 days, these 30 days make an “embo-
lismic” month and are thereby subtracted from the epacts. In a lunar cycle that is synchronized
with January 1, the epacts coincide with the age of the Moon on December 31. For this reason,
a “base” of the Moon b was introduced such that b = epacts + 1, which is but the age of the
Moon on January 1. A base adapted to the features of some specific algorithms and defined by
b = epacts + 3, was also introduced: this is Rhabdas’ base.’® As I shall explain (see sect. 7), he
should, in fact, have used the “epacts + 1” base. Since, in the Byzantine 19-year cycle, the first
lunar cycle year has 11 epacts, Rhabdas’ bases, keyed to lunar cycle years, are as in the following
table (note the absence of the saltus lunae between cycles 16 and 17, and see sect. 10):

m|1|23|4|5/6|7|8|9]10/1112/13|14|15|16|17|18 |19
b,|14|25| 6 |17|28 9 |20 1 |12|23| 4 15 26| 7 [18|29|10 21| 2

7

MeB0o 8¢ eVpng TOV TG oeArvng Bepéioy, kai Oélelg ebpelv kal TO TOCWYV NUePDV €0TLY
1 oeAnvr 4o cuVOdoL | TAVOEAVOV, TOLTEGTLY ATd Veopnviag Kal dmoxvoews, kpd-
oov tov evpeBévta Bepéliov, kai dp&ov amod tod Tavvovapiov unvog, kai £pegng Tovg
napeA8ovTag uijvag GAovg mpooTtiféval Td ToloVTw Bepeliw TACAG TAG TOV UNVOV TLLE-
pag HEXPL Kal TAG OO TG TOD Unvog €v ) TV {TNotv moLels, Kal cuvayay®v Tdoag Kal
&0poioag eig piav moodTnTa dpele ¢§ avtdv doovg ebpng uivag oeknviakois — i) 8¢ ToD

* For lunar epacts in Byzantine Computi, see the early and clear expositions by George
Presbyter (dated 638/9), sect. 2, in E. Diekamp, “Der Monch und Presbyter Georgios, ein unbe-
kannter Schriftsteller des 7. Jahrhunderts”, Byzantinische Zeitschrift 9 (1900), 14-51, at 25, and
by Maximus the Confessor, Brevis Enarratio Christiani Paschatis (dated 640/1), sect. 1.7, in PG
XIX, 1217-1279, at 1223; see also such an early Computus as Anonymus 892, sect. 14.

% For this “base’, see, for instance, Anonymus 1247, sect. 20, in Schissel, “Chronologischer”
(cit. n. 30); the last section of Anonymus 1256; Matthew Blastares, in Rhalles, Potles, ZOvtaypa
(cit. n. 30), 414-415 and 416-417; Isaac Argyros, sect. 7, in PG XIX, 1279-1316, at 1293; Anonymus
1377, sect. 5,in PG XIX, 1316-1329, at 1321; Anonymus 1379 or Pseudo-Andreas, in PG XIX, 1329-
1334, at 1334. See also the list of epacts and bases in Grumel, La Chronologie (cit. n. 19), 54-55.
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oeANVIaKOD UNVOG TOoOTNG eloty Nuépat kKO « kai Aemta y- oVtw yap dokel mapadodval
AUV 6 pabnuatikog IItodepaiog — kai Tag kdtwhev TOV KO « ehploKOpévag VOEL Eivarl TG
axpIPeiq TAG oA VNG NULEPA.
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The age of the Moon on an assigned date

After you have found the base of the Moon, and you also want to find the age of the
Moon from conjunction or from full Moon, that is, from new Moon and blooming, keep
the found base, and begin from the month of January, and successively add all of the by-
gone months to such a base, <namely,> all the days of the months up to and including
the date of the month in which you carry out your search, and gathering all of them and
putting them together into a single quantity remove how many lunar months you find
from them—the quantity of a lunar month are 29, days and 3 minutes, for the astrono-
mer Ptolemy appears to hand so-and-so down to us—and consider that those which are
found down from 297, are the exact age of the Moon.

Par. The algorithm for finding the age of the Moon a(x,) on day x in month X in a given
lunar cycle year m, counting from the day of the new Moon (o0vodog, litt. “conjunction”, veo-
unvia) or of the full Moon (mavoénvog, dnoyvotg, litt. “blooming”), with n,_= number of days
in month k, is the following:

(b, %.X) > b +Yiing+x> (b +Ygjn+x) mod 29/, = a(x,).

The length of the lunar month is of 29"/, days and 3 minutes according to Ptolemy, and this
is exactly what should be subtracted in the modulo reduction.

Comm. The age of the Moon on day x in month X is found by adding its age on a date taken
as epoch to the elapsed days counted from that date, and by then removing whole lunar months.
Since Rhabdas begins counting from January 1, his use of the base b = epacts + 3 is incorrect.
The counting of the days elapsed from epoch is carried out by grouping the days of the elapsed
months (addendum Zf;ﬁ n, ), to which the days x counted in the last month X must be added.
The final reduction modulo 297, removes whole lunar months.”* Rhabdas’ statement about the

* Computi that present algorithms in which the age of the Moon is calculated by reducing
modulo 297, include those by Maximus the Confessor, sect. [.28 and the eighth algorithm com-
piled in sect. I11.8, in PG XIX, 1245 and 1269; Psellos (dated 1091/2), sect. .15, in G. Redl, “La
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3 minutes is unclear, for the mean synodic month according to Almagest IV.2 exceeds 297, days
by a little less than 2 minutes (for it is 29;31,50,8,9,24 days) and a Aentov according to the calcu-
lations given in the next section (but unlike those found in sect. 9) is /_ a day.

Alternative algorithms for the age of the Moon at an assigned date

However, both in order to avoid confusion and for an easy apprehension, some remove
thirties, and afterwards they add half a day for each single thirty to the number left out.
Others remove sixties, whenever the number proceeds to a greater amount, and they add
a day for each single sixty to the number left out because two lunar months amount to 59
days. And this is the general and exact algorithm.

Par. An alternative, clear and easy-to-understand algorithm is:
(b xX)>b +XiZjme+x> (b, +XEZ N+ x) mod 30 + Y [[(b, + Xi=jnye+x)/30] =a_(x,).

The last addendum reintegrates '/, a day, of which one falls short when reducing modulo
30 instead of modulo 29%,.

An alternative algorithm to be used when the addition yields a large sum is:
(b %X)>b +Xijne+x> (b + X5l +x)mod 60 + [(b +¥5Zjn,+x)/60] =a (x,).

The last addendum reintegrates 1 day, of which one falls short when reducing modulo 60,
since 2 lunar months last 59 days.

Comm. These algorithms, whose rationale is explained by Rhabdas in detail, are also given
in Anonymus 1183, sect. 9. Lunar age algorithms usually simplify matters and reduce modulo
30 without reintegrating a day or a fraction of it.”” Algorithms that reduce modulo 60 can also
be found, especially in connection with the approach advocated by the so-called mevtanlodvteg
Kai é€amlodvreg.®

chronologie appliquée de Michel Psellos”, Byzantion 4 (1927-28), 197-236; 5 (1929-30), 229-286:
II, 237.1-11; Anonymus 1183, sects. 9 and 10, edited in E Acerbi, “Struttura e concezione del
vademecum computazionale Par. gr. 1670, Segno e Testo 19 (2021), 167-255; Anonymus 1377,
sect. 6, in PG XIX, 1323.

7 See the compilation in Maximus the Confessor, sect. II1.8, in PG XIX, 1268-1269;
Psellos, sect. 1.8, in Redl, “La chronologie” (cit. n. 36), I, 221-223; Anonymus 1092A, sect. 10, in
Karnthaler, “Die chronologischen Abhandlungen” (cit. n. 30), 7.109-113; Anonymus 1247, sects.
21 and 25, in Schissel, “Chronologischer” (cit. n. 30), 109 and 110; Isaac Argyros, in PG XIX,
1294-1296.

* For the latter, see Maximus the Confessor, sects. [.11-12, 16, in PG XIX, 1228-1229, 1233,
and the entire chapter II, in PG XIX, 1252-1264; Anonymus 1079, sect. 5, in A. Mentz, Beitrdge zur
Osterfestberechnung bei den Byzantinern, Diss. Konigsberg 1906, 76-100, at 80-84, and also the
discussion at 51-66; Anonymus 892, sect. 8; Anonymus 10924, sect. 3 (this Computus is a copy
of Anonymus 892). The latter defines the algorithm as xaptovAapikog “archive-keeper-style™
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Karnthaler, “Die chronologischen Abhandlungen” (cit. n. 30), 5.28. Anonymus 1183, sect. 9, sets
out a modulo 60 algorithm similar to Rhabdas.
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lege wp@v cf. tit.

The epacts of the Moon

Others, for the sake of both conciseness and easiness together, removing a lunar month
from each solar month hold the days that remain over from each month, which they re-
ally also call “epacts” Then, one day and a half remain over from the months of the Sun
that have 31 days, and one half only from those that have 30; then, 11 days are gathered
from the 12 months, adding which year by year to the present base too we find the sub-
sequent base, if this does not overstep 30; if indeed it oversteps 30, let us keep what is left
out after removing it.

Someone might legitimately raise the following objection, when hearing that the
months of the Sun are 12 and 7 of them have 31 days each: how on earth the epacts are
not 13 but 11? And we reply to this that February takes the one day and a half that re-
mains over from the lunar month in the month of January because this [scil. February]
has 28 days and it is not equal to a lunar month, whence the 11 <epacts> arise from
ten months only. Whenever the year happens to be a leap year, then the epacts of the
months do not come to be eleven but 12 because February has then 29 days, which
<extra> day, as is clear, it receives from the addition of the leap day, for February then
borrows only a half a day from January, and by necessity one day of January remains.
Then, the epacts are gathered from 10 months, whenever the year does not happen to
be a leap year, as follows. March 17, because it has 31 days, April one half because it
has 30, and in succession May 17, June one half, July 17/, August 17, September 7/,
October 1Y, November one half, December 1Y together 11. Whenever, as said, the
year does happen to be a leap year, then one day of January also remains over, and
<the epacts> become 12, for February receives half of this, as clarified. And go care-
tully through these <arguments>, in order for you to get these things exactly and on a
rational basis.
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Then, for example, let there be a search for us to find the age of the Moon on the
ninth of the month of March. And according to the general algorithm we say that base
23, January 31, February 28, and March 9; together they yield 91; I remove from these
three thirties (or one sixty and a half, for it is the same), and one <day> is left out for
me; I also add to it the three halves of a day that remain over from the three thirties,
which also make one day and a half; and they yield, with the previous single <day>, 2"/,
days. And I say that, on the whole 9" day of the month of March, the age of the Moon
is very nearly 2 <days> and a third, since I also remove 9 minutes on behalf of the 3
lunar months.

Likewise, one must also exemplify this by means of the other algorithm too, and let
there be a search for us to find what age of the Moon should be found on the 14" of the
forthcoming September of the 11" indiction, and we say as follows. Base 23; January and
February are equal <to two lunar months> and do not contribute anything; and I begin
from March, and I say: March 17, April 7/, May 17, June 7/, July 1%/, August 17/, and
September 14; together they yield 44; I remove 29", and 47, minutes from these; and 14
and 257, minutes are left out, so that this is very nearly a full Moon. Then, on the given
September 14, the age of the Moon is found, by means of this algorithm too, 147 .V
<days>, that is, 14 days and 257, minutes. So much for you about the age of the Moon
too. Consequently, it is next to be also said about the hours of its visibility, namely, how

many hours it shines and carries its torch alight on every night.

Par. For the sake of conciseness and easiness, some people use the epacts of the Moon,
which are the number of days of excess of a calendar month over a lunar month of 29" days.
This excess is 17, day for the months that have 31 days, '/, a day for the months that have 30 days.
In this way, 11 epacts cumulate every year. What follows is the algorithm for computing the base
of the Moon of lunar cycle year m + 1 once the base of year m is known:

(b)>b +11>(b +11)mod30=b _

-

A difficulty (admopéoete § &v t1g) and its solution: If the months are 12 and 7 of them have
31 days, why are the yearly epacts 11 and not 132 Because February has 28 days, and the 17/, day
needed to complete a whole lunar month amounts exactly to the same excess in January, so that
the yearly epacts result from adding the excess of the remaining 10 months. In leap years, the
epacts are 12 and not 11 because February has 29 days. A list of the lunar epacts of each month
from March to December is given; together they yield 11.

A computation of the age of the Moon is carried out by means of the second and of the
third algorithm given in sect. 7, on March 9 of the current year, and it yields base of the Moon
b =23 - age of the Moon a _(x,) = 2"/, days, from which Rhabdas subtracts 9 minutes because
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of the intervening 3 lunar months. It yields very nearly 2%, days (for 7 a day are very nearly '/,
a day).

A second computation of the age of the Moon is carried out by means of first algorithm
given in sect. 7, on September 14 of the following calendar year, and it yields i = 11, b = 23%
> a,(x,) = (by subtracting 29"/, days and 4'/, minutes from the sum of base, months, and days,
which amounts to 44 days) = 14 days and 25/, minutes = 14",/ "/, days.

127120

Comm. The last equality is valid because /", = °V,,, a day, that is, °//, = 257, minutes.
Rhabdas’ statement that in leap years the epacts are 12 and not 11 because February has 29 days
is erroneous: no elements pertaining to lunar computations take leap years into account (in fact,

they simply cannot).*
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¥ In September, the calendar year (and hence the indiction) changes, but the lunar cycle
year remains the same, which means that the same “base” must be used.

0 This aspect is frequently overlooked in analyses of the technical basis of Computi. This
point is discussed in Holford-Strevens, “Paschal Lunar Calendars” (cit. n. 31).
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Duration of visibility of the waxing and waning Moon at an assigned age of the Moon

Then, one must know that, from conjunction up to full Moon, its light increases by four
minutes per each nychthemeron, and again from full Moon up to conjunction, it de-
creases by four minutes, which minutes are four fifths an hour, viz. the 7Y V., part of
an hour, in such a way that five minutes cast upon an hour. Then, whenever you want to
recognize and to learn how many hours the Moon shines each night, quadruple its age,
and divide the resulting number by 5, and how many pentads you cast aside, so many

hours declare the Moon shines.

For instance, the age of the Moon happened to be found of 11 days, and let us seek
to learn how many <hours> the Moon should shine on that night, and according to the
expounded algorithm we say that four times 11, 44; one must divide these by 5, and I say:
five times 9, 45 apart from one fifth. Then, I say that, on that night, <the Moon> should
shine 9 hours apart from 1 fifth, which is '/, or 8 hours and 4 minutes, that is, %/, '/, one

10° 30
hour.

Par. The Moon waxes and wanes for 4 minutes per day, where a minute (Aentov) is in this
case ¥/, an hour (that is, it is '/, of the minutes used in the previous sections); these 4 minutes
amount to 7,7, '/, an hour. The algorithm for computing the duration of visibility v_of the wax-

ing and waning Moon at age of the Moon a (Rhabdas refers only to the time period from new
Moon to full Moon, left unshaded below) is:
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(a) >
|1£a£15,4a94a/5=vﬂ.
[16<a,v =v, .

A computation is carried out for a Moon aged 11 days: the Moon shines 9 hours minus 1

minute, that is, 8 hours 4 minutes, which are 82/31/101/30 hours.

Comm. The first equality stated by Rhabdas is valid because 7,7, |/, = *%, = .. The duration
of visibility of the waxing (waning) Moon is supposed to increase (decrease) stepwise every day
of a lunar month.*’ Accordingly, the visibility of the Moon within a cycle is approximated by a
triangular step function. As the full Moon is supposed to “shine” for the length of the interval
between sunset and moonset, the step is /, an hour, which is the scaling factor between 12 hours

(the length of any night in seasonal hours) and 15 days.

Seasonal and equinoctial hours

But this algorithm will prove true only on the occasion of the equinox—if, on the same
footing, the hours are conceived as seasonal all time along, viz. both the night and the
day are also conceived of 12 hours and we conceive some <hours> greater and some
lesser, but if the hours are reckoned as equinoctial on any occasion, that is, to be of equal
length both the nocturnal and the diurnal hours, as when, grant that, the longest day is
of 15 hours and the shortest night is of 9 hours, and inversely the longest night is of 15
hours and the shortest day is of 9 hours—this algorithm will not always prove true, but
we shall always need another one. God willing, this <algorithm> from my own will also
be expounded, and we shall not fear any rebutter.

It is as follows. Always multiply the age of the Moon that has been found by the
<length in equinoctial> hours of that night on the occasion on which the search occurs,
and divide the gathered number by the times of the equinoctial hour, which are 15, and
conceive one hour for each pentadecad.

For example, let a search have occurred for us to find, in the month of January (on
which occasion the night has 14 hours), how many hours should the Moon shine, its age

1 For this algorithm, see Anonymus 892, sect. 25; Anonymus 1092B, sect. 5, in Karnthaler,
“Die chronologischen Abhandlungen” (cit. n. 30), 9.159-170; Anonymus 1377, sect. 7, in PG XIX
1324-1328, where the algorithm is also described in detail. Latin computistic treatises include
Bede, De Temporum Ratione xx1v and the Computus printed in PL CXXIX, 1305. The connection
with Western sources is also made explicit in Theophilaktos’ unpublished Computus in Hamb.,
SUB, in scrin. 50a (Diktyon 32373), f. 11v (u&Onpa 100 Yyneov T@<v> Aativw<v> éppvevdev
napd oD éAayiotov Oeo@uldktov), whose last section expounds the same algorithm. See also
Neugebauer, HAMA (cit. n. 29), 830, and Neugebauer, Ethiopic Astronomy (cit. n. 19), 176-177.

[28]



Fabio Acerbi

being twelve days. And I say according to the expounded algorithm: twelve times 14,
168; these, once divided by 15, make 11 hours and /. And I say that, on that night, the
Moon shines 11 hours and /s with the other algorithm expounded above, on the con-
trary, 9%, hours and a tenth are found.

Further, one must also exemplify on the occasion on which the night has 9 hours, that
is, in the month of June, how many hours should the Moon shine, its age being found four-
teen days. And I also say anew according to the given algorithm: I multiply the 14 days of
the Moon by the 9 hours of the night; and they yield 126, for nine times 14 make 126; then,
I can remove 15 from these eight times; there also remain 6, which are the part two-fifths
of 15, that is, the part a-third and '/, of an hour. And I declare that, on that night, the Moon
shines 877, equinoctial hours. So much for you about the algorithms for the Moon too.

Par. This computation employs seasonal hours. The difference between seasonal hours and
equinoctial hours is clarified. An algorithm that employs equinoctial hours, where N, = length
in equinoctial hours of the night in month X, is as follows (at equinox, N, =12, and this formula
and the one given above coincide):

(a,X) >aN,~>aN /15=v.

A computation carried out for a Moon aged 12 days in January (the night lasts 14 equi-
noctial hours) demonstrates that the Moon shines 117, hours, whereas the other algorithm (and
thus reckoning by seasonal hours) gives 97,/ hours. A computation is carried out for a Moon
aged 14 days in June (the night lasts 9 equinoctial hours): the Moon shines 8",/ hours.

Comm. A day is divided into 24 hours (or into 12 double-hours). These can be evenly dis-
tributed between the two complementary portions of a day determined by sunrise and sunset, in
which case they are of variable length and are called “seasonal” (katpukai) hours. Alternatively, the
hours can be of fixed length, namely, /,, a nychthemeron; in this case, they are called “equinoc-
tial” (ionueptvai) hours, because this is the value of a seasonal hour at the equinoxes. The length
of the night in equinoctial hours is traditionally approximated, at the latitude of Constantinople,
by a linearly increasing step function ranging from 12 hours (in March and September) to 15
hours (in December) and back to 9 hours (in June).
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Passover

Now one must also speak about Passover, namely, the one of the Jews, which you will find
as follows. Undecuple the cycle of the Moon what<ever> it is, from the first one up to and
including the nineteenth one; then add 6, which they call “of the eras”, that is, of the bygone
six thousands of years, to such a multiplication too—however, one must add these only in
15 cycles of the Moon, namely, from the 1* cycle of the Moon up to the sixteenth; in the
remaining four cycles, viz. in the 16™, 17%, 18", and 19" cycle, add 7 instead of 6—and put-
ting all together remove as many thirties as you find from them, and keep that which is left
down from them, and cast upon these, from the beginning of the month of March, as many
days as you need for filling 50 days; if, however, the whole March is not enough, raise the
remaining <days> from April too, and wherever the number of the 50 days happens to be
filled first, whether in March or in April, say that Passover also occurs there.

For example, let a search by some people have occurred for us to find Passover in
the now-present year 6850, and we do as follows according to the algorithm I have giv-
en, and we say: on the present occasion, the cycle of the Moon has been found to be the
10™, and we measure it eleven times; and it yields number 110; we also add 6 to these;
and they yield 116; I remove three thirties from them; 26 are also left out; then, I need 24
days for filling 50 days, which I also take from March. Then, I say that Passover has been
found on the 24" of the month of March.

Par. The algorithm for finding the date p,_ of Passover (10 voukov ®@daoka, Packdiov) at

lunar cycle year m is (see below for an explanation of the shading):
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(m)>11m-~>

| m<16,11m + 6 - (11m + 6) mod 30 > 50 - [(11m + 6) mod 30] —: 1, =p

|16 <m<19,11m+7 - (11m+7) mod 30 > 50 - [(11m + 7) mod 30] —: 1 =p .

The 6 units to be added to 11m are the “epacts of the eras” (¢naktai Tdv aiwvwv), that is,
of the 6 whole millennia elapsed since Creation. The counting of the days begins on March 1 but
it might end in April. A computation is carried out for current year AM 6850 [= 1342], and it
yieldsm=10>p =24 .

Comm. The first branch of the algorithm can be described as follows: multiply the lunar
cycle year m by 11, add 6 units, reduce modulo 30, subtract the result from 50 and count as
many days as the remainder from March 1: the resulting day is the date of Passover; this day
falls in April if the remainder is greater than 31. This widespread algorithm is elsewhere called
“notarial” (votapikn).* The addendum 11m is the age of the Moon at the end of lunar cycle
year m — 1 (mod 19), that is, it is its epacts. This algorithm simplifies the fundamental algorithm
expounded in early sources such as Heraclius and George Presbyter* and which is actually a
pretty straightforward adaptation to the Byzantine era of the algorithm adopted in the early
Alexandrian Church. Heraclius’ and George’s algorithm has by far more complex branching
conditions and prescribes subtracting from 44, not from 50 (44 is the number of days nearest
to 1 and a half lunar month, as 297, + 147/, = 44"/)). The said simplification of these early algo-
rithms was carried out by writing 44 as the result of 50 - 6, with the parameter 50 lying outside
the modulo 30 reduction and the parameter 6 lying inside it: this rewriting allowed setting a
branching condition much more transparent than the condition in Heraclius’ and George’s al-
gorithm. This can be so explained: counting 50 days starting on March 1 one gets to April 19,
which is the upper term for Passover (see sect. 13), hence no counting from April 1 is required

“ By Anonymus 1079, sect. 5, in Mentz, “Beitrdge” (cit. n. 38), 98. Other occurrences of
this algorithm are in Anonymus 892, sect. 12; Anonymus 1092A, sect. 4, and 1092B, sect. 6, in
Karnthaler, “Die chronologischen Abhandlungen” (cit. n. 30), 5.40-6.47 and 9.191-10.198, res-
pectively; Anonymus 1079, sect. 5, in Mentz, “Beitrage” (cit. n. 38), 100; Anonymus 1183, sect. 6;
Anonymus 1247, sect. 3, in Schissel, “Chronologischer” (cit. n. 30), 106; Anonymus 1256, sect. 6;
Matthew Blastares, in Rhalles, Potles, Zvvtaypa (cit. n. 30), 416; Anonymus 1377, sect. 5, in PG
XIX, 1328; Anonymus 1379, in PG XIX, 1329.

* See H. Usener, “De Stephano Alexandrino’, in Idem, Kleine Schriften, 111, Leipzig -
Berlin 1914, 311-317, sect. 30; Diekamp, “Der Mdnch” (cit. n. 34), sect. 4 on 30-31, and the
discussion in Acerbi, “Byzantine Easter Computi” (cit. n. 19). See also the analyses in A. Tihon,
“Le calcul de la date de Paques de Stéphanos-Héraclius”, in B. Janssens, B. Roosen, P. Van Deun
(eds.), Philomathestatos. Studies in Greek and Byzantine Texts Presented to Jacques Noret for his
Sixty-Fifth Birthday (Orientalia Lovaniensia Analecta 137), Leuven 2004, 625-646 (Heraclius),
and J. Lempire, “Le calcul de la date de Paques dans les traités de S. Maxime le Confesseur et de
Georges, moine et prétre”, Byzantion 77 (2007), 267-304 (George).
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for large epacts, contrary to what is done in Heraclius’ and George’s algorithm. The 6 units to be
added to 11m are called, in Rhabdas’ work as well as in other Computi,** “epacts of the bygone
eras’ (émaxtal TOV aiwvwv tapeA@ovtwv), which correspond to the 6 whole millennia elapsed
since Creation: this is the basic mnemonic trick in this computation of Passover. In the second
branch of the algorithm, the additional unit to be added to 11m in the cycle years from 17 to
19 (and thus 7 units are added instead of 6) is the saltus lunae. Therefore, Rhabdas mistakenly
locates the lunar cycle year starting from which 7 units must be added (his formulation is un-
ambiguous): contrary to what he claims, in lunar cycle 16, 6 units must still be added. As usual,
whole lunar months are removed by reducing modulo 30. Unnecessary complications would
arise from reducing modulo 29%; moreover, one would not let Easter coincide with Passover
and reducing modulo 30 instead of modulo 297, shifts forward, and most conveniently, the
schematic date of the computed Passover.
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# See, for instance, Anonymus 892, sect. 12; Anonymus 1092A, sect. 4, in Karnthaler, “Die
chronologischen Abhandlungen” (cit. n. 30), 5.42.
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The weekday of an assigned date; Easter

I just need to learn the day on which Passover should also occur, so that I could also find
our sacred holy Easter of the believers from it, and I find this by means of the day-finding
algorithm, as follows.

Keep the cycle of the Sun what<ever> it is, and add to this the fourths cast upon
it, which we also call “leap days’, and thereafter begin taking, from the beginning of the
month of October <and> from each single month among the bygone ones, 3 days from
the months that have 31 days, 2 days from those that have 30 <days>, and gathering all of
them together add to them the days of that month in which you do your search too, and
uniting them together remove all weeks from them, and that which is found down from
the 7s, if one <day> is left out, this is Sunday, if two, it is Monday, if 3, it is Tuesday, and
similarly in succession up to 7.

For instance, let there be for us to find what weekday is the 24™ of the month of
March (on which Passover also falls), and we say as follows. Eighteenth cycle of the
Sun, four epacts <arising> from the leap years; of October, 3—for it has 31 <days>—of
November, 2—for it has 30—of December, 3, of January, 3, and of March, 24; together 57
days, from which I remove 8 weeks; one <day> is also left out, which is Palm Sunday; and
the other, forthcoming Sunday is the bright day of the resurrection of our Lord and God
and Saviour Jesus Christ, on which we orthodox Christians also celebrate our sacred and
holy Easter, viz. on the 31* of the month of March.

For one must know that, in that week in which Passover occurs, our <Easter> is also
invariably celebrated in the Sunday of the same week; if, however, <Passover> falls on a
Sunday, as it falls now, the subsequent Sunday is the one which exhibits our <Easter>, for
we determine the days left out in that week, and we add them to the date of that month
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in which Passover falls, and the day such a number amounts to, that one we say that it is
the one that receives the holy resurrection of Christ.

In order for that which is said to become clearer by means of an example too,
Passover has been found on the 24" of the month of March, a Sunday; consequently, our
<Easter> will also occur by necessity on the subsequent Sunday. Now then, these are 7
days (viz. a whole week), which, once adding them to March 24, we make 31; therefore,
the holy Easter of the believers is also on March 31. By using this day-finding algorithm
you will also incontrovertibly find whatever other day of the year you want.

Par. Easter (ITaoxa) can be found once the weekday (fuépa tiig ¢BSonadog) upon which
Passover falls is ascertained. To this end, the following general day-finding algorithm (fjpepo-
gvpéolog uébodog) for the weekday w(x,) of day x of month X in a given solar cycle year s (n, =
number of days in month k) is needed:

(5,6,X) > s + [s/4] > s + [s/4] + X¥L(n,-28) > s + [s/4] + 2xh(ne-28) + x >
> [s + [s/4] + Xic=o (- 28) + x] mod 7 = w(x, ).
Weekdays from Sunday to Saturday are numbered from 1 to 7.

A computation is carried out for current year AM 6850 [= 1342] March 24 (Passover), and
it yields s = 18 > w(24,) = 1, which means that Passover falls on Palm Sunday. Therefore, the
day on which the Orthodox Church celebrates Easter is the following Sunday. An algorithm for
finding Easter as the Sunday which comes next a given date is:

(®,)>p, +[B8-wp)>{p, +[8-wp )}mod3l=r
A computation is carried out for current year AM 6850 [= 1342], and it yields p =24 -

r =31,

Comm. The algorithm computes the weekday of any date x in month X.** To this end, it
suffices to count the days elapsed from a date falling on a known weekday and remove whole
weeks. It should be kept in mind that a year of 365 days exceeds a whole number of weeks by 1
day (summand s in the above algorithm: recall that the Byzantine world era and the solar cycle
are synchronized; this summand also includes 365 of the 366 days of a leap year), a leap year ex-
ceeds it by 1 additional day (further summand [[s/4]),* a month exceeds it by its own length in
days minus 28 days (= 4 weeks), namely, n, - 28 in our notation. The sum XL (ny,-28) is the
excess over 28 days of the months from October to the one preceding the given month X. The

# This algorithm is ubiquitous in Byzantine Computi. See Anonymus 892, sect. 12;
Anonymus 1079, sect. 1, in Mentz, “Beitrage” (cit. n. 38), 76; Psellos, sect. 1.13, in Redl, “La
chronologie” (cit. n. 36), II, 229-232; Anonymus 1183, sect. 7.

* Solar cycle years are used only in computistical algorithms of this kind.
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date x must then be added. Reducing the sum modulo 7 involves eliminating whole weeks. As
only months of 31 and 30 days are mentioned and because of the leap year contribution included
in the term [[s/4], February must be set to 28 days; given the fact that the summand [s/4] is op-
erative throughout the year, the month X must be a month coming after February. This restric-
tion, however, is of no consequence as far as Passover or Easter computations are concerned.
To check the consistency of the algorithm, we should recall that the weekday of the epoch date
of the Byzantine world era is a Saturday = 7, so that w(1 ) = 2 for the first day of the solar cycle,
which is the output fors=1,x = 1.
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Leap days and leap years

The finding of the leap day has the following rationale. As the Sun passes through its own
circle in 365 nychthemera and 7, of a nychthemeron, which are 6 hours, every four years
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it completes one nychthemeron, which is also added to the month of February because
this is defective—for it has 28 days—and once it has also received this <nychthemeron>
it has 29 days, and that year becomes of 366 nychthemera.

Then, whenever you want to know whether a year is a leap year or not, keep the
years found from the foundation of the world, and remove them by 4, and whenever
nothing is left out, the year is always a leap year; if one or two or three are left out, the
year is not a leap year.

Or also in another way, for the sake of both conciseness and easiness. Keep the years
found down from 6800 years, which are 50 now in the present year, and similarly remove
these by 4, that is, cast all tetrads aside, and whenever nothing is left out but it ends in 4,
the year is a leap year; if <it ends in> one or 2 or 3, as said, it is not a leap year.

For example, let there have been a search for us to find, now and in the present
year 6850, whether the year has a leap day or not. And we resolve the years out into 4
as follows, and we say: four times 1000, 4000; four times 500, 2000; 4 times 200, 800;
four times 12, 48; 2 are also left out. And we say that the year does not have a leap day.
We call the nychthemeron completed every 4 years “bissextile”; this is said “bissextile”
from the fact that in early times the priest could speak only in the month of February, on
twice-sixth before Calends. So much for you about the finding of the leap year and of the
<leap> day. But we must return to the point on which we have also stopped our exposi-
tion, by completing what remains of the paschalion.

Par. The Sun traverses its own circle in 365", days, therefore every 4 years the 6 exceeding
hours make 1 full day, which is added to February. The resulting leap year (Bioce§tog) comprises
366 days.

The criterion for identifying whether a year is a leap year or not is: if y = 4 (mod 4), then
y is a leap year.

A concise and easy criterion is: if y - 6800 = 4 (mod 4), then y is a leap year.

A computation is carried out for current year AM 6850 [= 1341/2], which is not a leap year
because 6850 = 2 (mod 4).

A Bioe&tog “leap day” or “bissextile” is the nychthemeron completed every four years. The
origin of the denomination “bissextile” is as follows: the ancient priest was allowed to speak only
on a “bis-sextus” (twice-sixth) day before the March Kalends.
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* fort. lege TovTOIG® exp. TOD cf. mapadnrodvtog

Meat-Fare Sunday

Now then, as soon as you recognizes in what month and on what date of it Easter has
occurred, and you should also find on what date of January or of February Meat-Fare
should occur, if the year is not a leap year, always add 3 days to the date of that month in
which Easter falls, if it is a leap year, 4, and know that Meat-Fare also occurs on that date
of January or of February. One must know that, whenever Easter is found from the twen-
ty-second of March up to and including the twenty-eighth of the same <month>, Meat-
Fare always occurs in the month of January; <whenever Easter is found> from <March>
28 and successively up to April 25, <Meat-Fare> is always found in February.

Par. The algorithm for finding the date t of Meat-Fare Sunday (Andkpew) being r the date
of Easter is as follows:*’

(ry) >r+ 3+ [(y mod4)/4] > r + 3 + [(y mod 4)/4] - 1=t
If22 <r<28 -[(ymod4)/4],thente J;if29 <r<25, thenteF.

Comm. In the Byzantine liturgical calendar, Meat-Fare is the third Sunday of the pre-Lent-
en period of preparation and repentance;* it falls 8 weeks = 56 days before Easter. As in non-
leap years February plus March last 59 days, Meat-Fare Sunday falls numerically 3 days after
Easter (summand r + 3) but 2 months before the month in which Easter falls, with the due ad-
justment in leap years (summand [[(y mod 4)/4]), and keeping in mind that if the date of Easter
falls on a day after March 29 (28 in leap years), then Meat-Fare Sunday falls in February rather
than in January. A modulo 31 reduction is not envisaged by Rhabdas, but it must be introduced
in order to take into account Easter dates in March shifting to April because of the addition of
3 + [[(y mod 4)/4]. See also the end of this section.

Easter and Passover Terms

You must also know this, that Easter never occurs below the 22" of the month of March
nor, on the other hand, above April 25. Likewise, Passover neither occurs within March
21 nor does it exceed the eighteenth of April, because the Jews traditionally slay the lamb

7 The floor function is particularly effective in formalizing leap year computations. In fact,
if y is a year in the Byzantine world era or in the era AD, [(y mod 4)/4] singles out leap years—
which in both eras are such that y = 4k for some integer k—because y = 1, 2, 3 or 4 (mod 4), and
[71=1071=071=0,[1] = 1. As taking the floor of a division involves taking its integer quotient
by disregarding the remainder, [y/4] is the total number of leap years since epoch.

* See Anonymus 892, sect. 12; Anonymus 1079, sect. 2, in Mentz, “Beitrage” (cit. n. 38), 78;
Anonymus 1183, sect. 8; Anonymus 1256, sect. 9; Matthew Blastares, in Rhalles, Potles, Zovtaypa
(cit. n. 30), 418; Isaac Argyros, in PG XIX, 1301 and 1304.
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on the full Moon of the first month, the one they call “Nisan’, <which begins> within the
Spring equinox, whereas we <celebrate our Easter> on the immediately adjacent Sunday.

Par. The terms for Easter are: 22, <r<25,. The terms for Passover are: 21 <p<18,. The Jews
slay the lamb on the full Moon of the lunar month that includes the Spring equinox (¢apuvr) ionpe-
pia), a month they call “Nisan™; the Christians celebrate Easter on the Sunday next after Passover.

Comm. The intervals given above set the standard terms for Easter and Passover in Byzantine
Computi; the former terms straightforwardly derive from the latter by applying the rules for find-
ing the date of Easter. The Passover terms are so determined because the Spring equinox (March
21) is the lower bound and Passover can fall within 1 lunar month from that date. The real upper
bound for Passover is April 19: see note 22 above, and the commentary on sect. 15.

Discrepancies between the actual full Moon and the Passover date

Sometimes we also overrun a single week because the full Moon does not occur on the
numerical date for Passover handed down in the first place and originally by our divine
and holy Fathers, the Moon inheriting the cause <of this> from the transformation of
the entire <Cosmos>; for the most venerable astronomers say that the greatest sphere
revolves by one degree every hundred years, whereas those later than them, who per-
formed more accurate observations, claim that <it revolves> no more than up to 70 <de-
grees every 100 years>. It would also be easy for us to carry out a correction of this <dis-
crepancy>, were all Christians subjected to one single ruler and king, very much as this
was the case during the realm of Constantine the Great; now, since this is not the case, we
disorderly deem it fit to set Easter on a specific day, whereas the Latins and the Iberians
set it on another, and again the Triballi, the Bulgars, the Russians, the Alans, the Zicchi,
and all the remaining Christian denominations. And for this reason, owing to the virtues
of concord and of orderliness, one is content with perpetuating this state of affairs, in or-
der for the others not to believe that there occurs any changing for the sake of changing
and confusion. However, it is not the case that we overrun a week from Passover always
and every year, but seldom and on specific occasions, exactly as it also happened to be
the case right now; for, as the calculation intimates for us that Passover <falls> on March
24, a Sunday, whereas the full Moon of the first Jewish month does not fall on it but on
March 22, the Friday before Palm Sunday, because of the previously-adduced reason we
did not celebrate Easter on March 24, but on March 31. And go carefully through these
<arguments>, in order not to be altogether uninitiated to them.

One must set out an exemple for you, for the sake of greater clarity and ***. On the
present occasion, Easter has been found on the 31* of the month of March, and let us seek
to learn <where> should Meat-Fare be found. Now then, since the year is by no way a leap
year, I add 3 to March 31; and together they yield 34; I remove the 31 days of January from
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these; and 3 are left out, which fall in February; for whenever in this <computation> the
<resulting> number oversteps 31, casting it [scil. 31] aside February receives what is left
out. Then, Meat-Fare has been found on the 3™ of the month of February.

Par. Occasional discrepancies between the actual full Moon (and therefore the actual
Passover) and the Passover date that is computed according to the prescriptions of the Church
Fathers result in more than 1 week of interval between the full Moon (that is, the actual Passover
according to the Jews) and Easter; the reason adduced is the precession of the equinoxes (1 de-
gree per century according to Ptolemy, 1 degree every 70 years according to later astronomers,
who relied on more accurate observations).* Despite the fact that homogeneous standards were
achieved when all Christians were united under a single ruler, for instance during Constantine
the Great, occasional discrepancies were thereafter left unsettled in order to avoid creating even
more confusion, as in Christendom the date of Easter was variable according to the Christian
denominations. The discrepancies between the actual full Moon and the Passover date are oc-
casional; notably, an instance occurs in the year in which Rhabdas writes, as the full Moon oc-
curred on March 22,% whereas computations for Passover yield March 24.

A computation is carried out for current year AM 6850 [= 1342], and it yields r = 31, > ¢
= 3,. The example shows that the algorithm set out at the beginning of this section is read (and

should be read) as follows:
(ry)>r+3+ [(ymod4)/4] > (r + 3 + [(y mod 4)/4]) mod 31=t¢.

Comm. As Julian calendar years are modelled on the tropical year, the precession of the
equinoxes is irrelevant to determining the date of Easter. Rhabdas’ statement is therefore wrong.
In sources contemporary with Rhabdas, Barlaam stressed a gap of about 1 day every 304 years
between real and schematic Moons, based on a more accurate value of the mean synodic month
(see sect. 7). The gap accumulated since the times of the conception of the “table of the fathers”,

Barlaam writes, amounts to 2 days.”!

* The latter is among the values used in Arabic astronomy; see the discussion in S.
Mohammad Mozaffari, “A Medieval Bright Star Table: The Non-Ptolemaic Star Table in the
Ilkhani Zij", Journal for the History of Astronomy 47 (2016), 294-316, in particular 303-307.
Values such as 1°/66" were known to Byzantine astronomers acquainted with the Arabic tradi-
tion as early as ca. 1032: J. Mogenet, “Une scolie inédite du Vat. gr. 1594 sur les rapports entre
lastronomie arabe et Byzance”, Osiris 14 (1962), 198-221, at 209 (section 29).

. On AD 1342 March 22, at 23:42 UT, according to http://www.eclipsewise.com/. Recall
that the local time in Constantinople is nearly exactly UT + 2 hours and that a morning epoch
was used in Byzantium, so that the entire night is attached to the previous day: Neugebauer,
HAMA (cit. n. 29), 1069 n. 6.

51 Tihon, “Barlaam” (cit. n. 20), 376-378 (sects. 23-29). The “table of the Fathers” denotes
the Damascene table and its traditional list of Passover dates. John Damascenus lived about 600
years before Barlaam and Rhabdas.
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Apostles’ Fast

You will find the Apostles’ Fast that occurs in Summer after Pentecost as follows. Reckon
from the day on which Easter occurred up to the third of the month of May, and what-
ever number you find, so many are also the days of the Fast of the holy, glorious, and
all-praiseworthy Apostles, which occurs in Summer.

For instance, the sacred holy Easter has been found on the 31* of the month of
March, and I reckon from this <day> up to the third of the month of May, and I find 33
days, and I say that so many are also the days of the aestival fast. In order for that which is
said to appear true and unambiguous by means of a multiple check and test too, reckon,
from the month of March (namely, from April 1), the successive days of the months up
to and including the 29" of the month of June, on which the venerable remembrance of
the holy Apostles occurs, and remove from them 50 days of the holy Pentecost and 7 of
the week of the Holy and Life-creating Spirit, and those which are left out are the days of
the Apostles’ Fast. Then, 90 days are found as follows: 30 from April, 31 from May, and
29 from June; together, again, 90 too; then, casting 57 days aside from them 33 days are
left out, as many;, as is clear, as were also found by means of the previous algorithm. So
much for you about the knowledge of the paschalia too.
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Par. Apostles’ Fast (Nnoteia T@v dyiwv dmootolwv) is the period f,, reckoned from Easter
to May 3. The algorithm for finding f, being r the date of Easter is as follows:

(r)%rEMé?)Ma—r:fH.

A computation is carried out for current year AM 6850 [= 1342], and it yields r = 31 > f,,
= 33 days.

And this suffices for a comprehensive survey of Paschalia.

Comm. The rationale behind choosing May 3 as the reference date for the subtraction is the
following:** Apostles’ Fast begins the second Monday after Pentecost, that is, 57 days after Easter
(57 = the 50 days of Pentecost plus 1 week) and ends on June 28. However, an inclusive time
interval that begins 57 days after Easter and ends on June 28 is equal to an inclusive time inter-
val that begins on Easter and ends 57 days before June 28, that is, on May 2. Prescribing May 3
means that one must reckon (and not count)* the days from Easter and up to May 3.
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‘Eyw 8¢ kal Miav teBadpaka ndg ot Oeonéoiol kai Bedpopol matépeg UV ol €v T Tpw-
TN ovvelBovTeg ouvadw TNV Tod ITdoya ékBépevol ebpeoty, dnwg ovk EPpovTioav dta
nefodov tvog v TG Andkpew mponyeiobatl eVpeoty, AAAA TOOVAVTIOV PETA TNV TOD
[Taoxa dnAwaotv v Anokpew éDéomoay edpiokeobat. épot 8¢ kal TodTo ékmovijoat Kal
dvaminp@oat St ayiwv xeivwy eOx®V Kexdptotat, d§lov 6¢ kai Thv aitiav ék0éabat O
fjv el¢ TOV dy@va todTov épavtov kabfjka. @ulovelkodvTt pot moté petd TivogTovdaiov
mepl ThC NUeTEPAC TOTEWS WG EYKANUA Tt Kal TodTo énnyayev 1t 8fjfev dvev Tod vout-
koD Paockahiov 1o Nuétepov ITaoya ebpelv ov duvaueba- 60ev Sramovnbeic ept TovTOL
1EB0SOV Tva Bavpaciav E@edpov ftig ywpig Tod voukod Packaliov 16 féTepov evoE-
Béc kal dylov ebpioketan [Tdoya, ANV 00K AVTIOTPOQWC, HoTep dU EKeEiVOL TIPDTOV LEV
gvpiokovoa 10 TTdoxa, 10’ obtwg St adTod Ty Andkpew kai Tiv Tod Bépovg vnoteiav
npwBvotepov, AAN €vopdivwe pdToV ugv Ty Andkpew, gita 10 ITaoya Kai e0OLC THV
&v 1@ O¢pel [[Nnoteiav]] yivouévny 1dv dyiov drootodwv Nnoteiav.

"Exet 8¢ obtwe. kpdtnoov 1ov éveotdta Tig oeAvng Oeuéhiov olog éotl katd TV
npwtnv 100 Tavvovapiov unvog, kat Enapov anod thg dpxig Tod TotovTov Tavvovapiov
unvog Nuépac doag xprilelq eig exmAn| . pwoty fuepdv v, cvvTiBepévov Snhadt) uetd Tod
Oepeliov Tiig oeAnvng- el 8" ovk é€apkréaovaoty 6 Te Bepéliog kai ai mdoat Tod Tavvovapiov

> See Anonymus 1247, sect. 24, in Schissel, “Chronologischer” (cit. n. 30), 110; Anonymus
1256, sect. 10; Isaac Argyros, in PG XIX, 1305 and 1308; Anonymus 1377, sect. 9, in PG XIX,
1328-1329.

> The difference between counting and reckoning is usually formulated as the difference
between inclusive and exclusive reckoning.
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HNVOG iHEpaL, TAGAETOVOAC €I ATAPTIOLY TOV V NuepdV AapPavw and Tod Pevpovapiov

Unvog — ARy eidévat oe kai tovto O¢l, wg 6tav §lcodTat 6 OepéNiog TG oA VNG TaiG TOD
Devpovapiov Unvog nuépatg, kai &vt kn 1 k6, &av xpn mavteAdg TOV TiG oeAnvng Oepé-
Aoy, kal Aappavetv €k povov T@v dvo punvdv tod telavvovapiov kal Tod Oevpovapiov
TNV TOV V NUEPDV TOOOTNTA — Kai THV TOoTaiay ToD HNvog Ekeivov év ) TUXOV 1} TtevTn-
KOOTI TOV Nuep®dv éteAevtnoey evpé Sid Tiiq pebBodov tod fuepoevpeoiov moia Nuépa
TG ¢BSouadog €oti, kai el uev pia katalewdi, Aéyw tavtny eivat Ty 100 ACWTOL KL-
plakny, i 6¢ B, Ty devtépav Tig ¢Bdouddog Tig Anokpew, el ¢ Tpeig, TNV TpitnY TG

avtiic ¢BSouadoc, kai kabBe&ng duoiwg uéypt Tod caPPdatov, Kai f) EpYOUEVT KVPLAKT TTG
avtiic ¢Bdopadog dfhov 61 €otiv 1) ATOKPEW. KPATNOOV 0DV TV TTOGTHV TOD UNVOG €V

1 TevTnkootn €tuxev fuépa- mpoobeg adTf kal Tag émhoinovg Nuépag dypt kai Tig €p-
XOMEVNG KVPLAKAG, Kakeivny Aéye elvat ThHv Huépav TG Andkpew. — EKToTe 0OV i fovAel
YIVWOKELY Kal TO Vopkov mote yivetat Ddoka, okomel TOV TG 0eANvNg kOkAov O7moiog
¢oTi, kal ebprioelg év Tf] bmokepévny oot katwbev MAVOIdL TOV mapakeipevov aplOuody,
glre év 10 Maptio éoTiv glte év 70 AnpAAiw.

"H kai dAwg. €Eétacov tod mapeABOvTog Xpovou TO VOHIKOV oD £TuxE, KAV UV
ebpng 0Tt €ig TOV Ampidhiov €yéveto, dmoBomodnoov fuépag ta, kal €ig Vv €ERG, fjtot
Vv Swdekatny, 100t elvan 10 vopkov- i 8¢ eig Tov MapTtiov €tvye, mpdobeg vuxOruepa
tn), Kai €ig TO £@e&NG, fjTol TO évveakatdékatoy, Yivwoke yiveadat O voukov. — eita apid-
Unoov amno Ti§ Kuplakig TG Anokpew fHuépag ve, kal EvBa dv kataAngng, kel éoti O
[Taoxa- kal dAwy amo tod Idoyxa péxpt g Tpitng Tod Mdlov peTp®dV eVPNOELS Kal TNV
Nnoteiav 1@V ayiwv Amootolwv.

‘Tva 8¢ kai ped’ drodeiypatog cagéotepov yévntal 10 Aeyouevoy, brokeiobw edpeiv

NUAC KaTd TO VOV £veoTOC,CwV £T0G TV Te ATIOKPEW, TO VOLLKOV, TO e0oePeg dytov Ildoya

Kal TNy év 1@ Bépel vnoteiav. kal éneldn katd 10 1010010V €T0¢ O TG 0eEAVNG KUKAOG

ebpeln dékatog 6 6¢ Tavtng Beuéliog €0y elkOOTOTPLTOV, KPAT® TODTOV (fyovV KY), Kal

AapBavw kai and Tod Tavvovapiov €ig EkmMANpwoty TV v Nuépag K{. kal £meldn eig Tag
k{ 100 Tavvovapiov EAnéev 1) mevinkootr) T@V fuep®dv, dvalnt® did Tig neBddov T0d

fuepogvpeoiov moia uépa ¢ £BSouddog Tvyxavel, Kal eDPIOKW TAVTNY KATA THV TPO-
ypageioav pébodov obtwe. 6 10D NAiov kKOKAOG DITAPXEL 1N°S TOVTW TTPOOTIONUL Kal T&
¢mBarlovra avT® &nod tod Prot€Tov Tétapta, dmep eioi 8- kai yivovrat kP- dpoiwg npoo-
TiOnWw TadTalg Kal TAG EMAKTAC TOV TapeABovIwy TpLdv unvdv arn’ dpyxic Oktwfpiov
uéypts Tavvovapiov, ai kal eiolv n- kal yivovrat peta T@v KB, A+ Tavtaig ouvtidnut kal

146 k( 100 Tavvovapiov- kat yivovtat mdoat 0uod v, ¢€ dv aealp® £Bdouddag dkTw- Kai
gvamelei@On pot fuépa pia, fjvtiva kat Aéyw eivat Ty Tod ACHTOL KUPLAKTY, Kai 1] €pX0-
uévn £Tépa KupLakn, §tig €otiv 1) Tpitn 100 Pevpovapiov unvoc, otiv N Andkpew- { yap
kai kG- yivovtat AS, a@’ @v ékPfadov v Aa tod Tavvovapiov- kai katekeipOnoav Huépat
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Y, at kai gioi Tod Pevpovapiov, ig fjv Snhovott Aéyw evpedijvat kai Ty Anokpew. (NTd
TO VOULKOV, Kal evpiokw €v Tf) dmoTeTaypévy TAOidL T@ Sekdtw kOKAW TAG oeAVNG
TapaKelpeEVNY Ty k8 100 MapTtiov pnvog. fj kai GAwG. £€etdlw katd TOV TapeAdovta
XpOvov Tod ETuxe TO VOUIKOV, Kal ebpiokw TodTO €ig Tag & ToD AmptAAiov: omiobomodd
&€ abTAG MUEPAG Lo, Kal KaTavTd kai 00Twg £ig Tag kd Tod MapTiov |, eig fjuépav kvpia-
KNV, 0G Yn@ilwv evpnoeig.

OéA\w 10 fHETEPOV TOV TIOTOV dytov ITdoya bpelv, kal dplBud® &md Tig KvpLakiig

T AtdKpew Tag EQeENC fuépag dypic dv owow fuépag v, kai 6mov ovvtehecbdoty, év
gketvn T NUépa Aéyw yiveoBal kai 10 flpétepov Ildoya. olov ebpébn 1) Adkpew €ic TG

y 100 Devpovapiov- kat EkPAANw TavTag Ao TV kN T0d Devpovapiov fep®dV- Evare-

AeigOnoav kai fiuépat ke- TavTAIE TpooTiONUL Kal TV Aa Tod MapTiov- kal yivovTtal 6pod

fHépat v6. kal Aéyw gbpebijval kal 16 dylov Ildoya gig Tv Aa Tod MapTtiov pnvog.

"H kai A wG. dgele amd tod dptBuod év fj evpedn 1) Andkpew Huépag y, ei 8¢ €ott
Pioe&tov?, §, kal TOV KataleipBévta Gpa mOoOG €0Ti Kai mod £Tvxev, fyovv &g TOV
Tavvovdplov fj eig TOv Pevpovdplov, Kal i pev Etvyev 1 évanolelpBeioa moooOTNG peTd
TV TOV TpLOV §j TOV § dgaipeotv i 1OV Oevpovdplov, Aéye katd Tivoe yevéoBat kai
10 [Tdoya gig TOV Ampidhiov- i 8¢ eig TOv Iavvovdplov, Aéye ebpebijvar eig TOV MdpTiov.
olov ebpéln 1) Amokpew eig Tag y Tod Oevpovapiov: kai ApeA®d tavtag émnel Pioeftov®
ovk €07, Kal kataAnyw eig THv Aa Tod Tavvovapiov, kai Aéyw yevéaOat 10 ITaoya €ig TV
Aa tod MapTiov unvog.

Metp® dnod Tavtng tag ¢@efng nuépag tod Anphiov uéxpt Tig Tpitng tod Maiov

HNVOG, Kal eVpiokw TavTag nuépag AS, kai Aéyw elval kal tag Nuépag Tig év 1@ Bépet
Nnoteiag 1@V dyiwv dnootodwv Nuépag AJ.

"Exe kal tavtny Ty pébodov pr diagevyovosdv cov Ty €peoty, gidwv dplote kal
EPAOLLE.
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A paschalion without using Passover

I have always been utterly surprised by the fact that our divine and god-carrying Fathers,
those that met in the first synod to set out the finding of Easter, I mean, by the fact that
they did not put their minds to make, by whatever algorithm, the finding of Meat-Fare
come first, but, on the contrary, they decreed that Meat-Fare should be found after the
explanation of Easter. It has been a pleasure for me to work hard on this too, and to suc-
ceed thanks to such-and-such holy prayers; still, it is also worth setting out the reason
why I resolved to get involved in this game. For I was once engaged in a discussion with a
Jew about our faith; he also adduced this as a charge of sorts, that betcha we are unable to
find our Easter without Passover; whence, working hard on this I found out a wonderful
algorithm that can find our sacred and holy Easter independently of Passover, except that
<this does not happen> in perturbed order, as for <an algorithm> that first finds Easter
by means of that one [scil. Passover], then accordingly Meat-Fare by means of it [scil.
Easter], and the aestival fast first last, but in due order, Meat-Fare first, then Easter, and
forthwith the Apostles’ Fast that occurs in Summer.

It is as follows. Keep the present cycle of the Moon what<ever> it is on the first of
the month of January, and, from the beginning of such a month of January, raise as many
days as you need for the filling of 50 days, compounded, as is clear, with the base of the
Moon; if both the base and all days of the month of January do not suffice, I take the
<days> missing for the completion of the 50 days from the month of February—except
that you must also know this, that, whenever the base of the Moon is equal to the days of
the month of February, and this is 28 or 29, one has to neglect the base of the Moon alto-
gether, and to take the quantity of 50 days from the two months of January and February
only—and find, by the day-finding algorithm, what weekday is the date of that month in
which the fiftieth day ended, and if one <day> is left out, I say that this is the Sunday of
the Prodigal Son, if 2, it is Monday of the week of Meat-Fare, if three, it is Tuesday of the
same week, and similarly in succession up to Saturday, and it is clear that the forthcom-
ing Sunday of the same week is Meat-Fare.>* Then, keep the date of the month on which
the fiftieth day falls; add to it the remaining days up to and including the forthcoming
Sunday too, and say that that one is the day of Meat-Fare. — Then, thereafter, if you also
wish to know when Passover occurs, consider the cycle of the Moon what<ever> it is,
and you will find, in the table set out below for you, the number that is placed next <to
it>, whether it is in March or in April.

Par. Rhabdas wonders why the Church Fathers chose to determine the date of Meat-Fare
Sunday after the date of Easter rather than vice versa. Spurred by an exchange with a Jew—who

>* As Sunday is the first day of the week, this statement is inaccurate.
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reproached Christians for not being able to compute the date of Easter without using the date of
Passover—Rhabdas set out to find an algorithm for computing the dates of Meat-Fare Sunday
and of Easter, and the duration of Apostles’ Fast, in this order and without computing the date

of Passover.

The algorithm for finding such a paschalion once the base b is given [the sign S(*) is the
Sunday next after day *] is as follows:

(b,)>50-b —1,>w50-b —1)>SwW(B0-b —1)]=f >f +56=r >3, -1 =
fH,m'

Comm. Rhabdas reuses a part of his Letter to Tzavoukhes.”® To explain his rule, I shall
combine the definition of “base” given in sect. 6 (which, contrary to what Rhabdas claims, is
not the “base on January first”): b = (11m + 3) mod 30, and the rule for Passover given in
sect. 10: p =50 - [(11m + 6) mod 30] —: 1, . Bypassing for the sake of simplicity some nice-
ties of modular reduction, we get p =50 -3 - [(11m + 3) mod 30] -1, =50-3-b -1, =
47 - b _-:1,. Now, counting lunar days starting from January 1 rather than March 1 adds 59
days:p =59+47-b -1 =106-b -:1.Weare seekinga proxy for Passover such that Meat-
Fare Sunday is the proxy for Easter: therefore, the proxy for Passover must precede Passover
by 8 weeks, that is, by 56 days: Proxy(p,) = 106 - 56 - b -1 =50 - b _~: 1. Rhabdas asserts
that values of b, = 28, 29 (that is, m = 5, 16) must be disregarded, counting directly 50 days
from January 1. The reason is that January 21 or 22 are too early dates for a proxy Passover, for
Passover would thus fall on March 19 or 20 at the latest. The striking anomaly of this algorithm
is that the saltus lunae disappears, unless it is included in the definition of the base, which is not
what Rhabdas does. This—and the mistake in locating the saltus itself in the main algorithm
found in sect. 10—shows that Rhabdas drew this idea and most of his material from some pre-
vious authority, and incorporated this information into his text without fully understanding its

implications.

To my knowledge, Rhabdas is the first author who sets forth, and openly presents it as
such, an algorithm for computing the date of Easter without mentioning Passover. However,
the same algorithm, without Rhabdas’ sagacious point about the algorithm not using Passover,
is found in the 1335 Computus contained in Matthew Blastares’ Z0vtaypa.” As Blastares’ trea-
tise is a compilation, it is likely that Rhabdas and Blastares depend on a common source. Isaac
Argyros appropriated the same idea in his Computus dated 1372 and claimed that it was his own
discovery, which is exactly what Rhabdas had claimed thirty-one years before.”

> Tannery, “Notice” (cit. n. 15), 134.23-138.27, both verbatim and after rewriting.

> Rhalles, Potles, Zovtaypa (cit. n. 30), 418-419.

57 See the discussion in O. Schissel, “Die Osterrechnung des Nikolaos Artabasdos Rhabdas”,
Byzantinisch-neugriechische Jahrbiicher 14 (1938), 43-59.

[46]



Fabio Acerbi

An alternative algorithm for computing Passover; computation of a paschalion

Or also in another way. Ascertain where Passover fell in the bygone year, and if you find
that it occurred in April, walk 11 days back, and know that Passover is on the successive
<day>, viz. the twelfth; if <Passover> fell in March, add 18 nychthemera, and know that
Passover occurs on the successive <nychthemeron>, viz. the nineteenth. — Then reckon
56 days from Meat-Fare Sunday, and wherever you stop on, Easter is there; and again,
by determining <the number> from Easter up to the third of May you will also find
Apostles’ Fast.

In order for that which is said to be also clearer with an example, let it be supposed
for us to find, in the now-current year 6850, Meat-Fare, Passover, the sacred holy Easter,
and the aestival fast. And since in such a year the cycle of the Moon has been found to be
the tenth and its base is the twenty-third, I keep this (namely, 23), and I also take 27 days
from January for filling 50. And since the fiftieth day stopped on January 27, by means of
the day-finding algorithm I seek what weekday happens to be, and I find this by means
of the algorithm written above, as follows. The cycle of the Sun turns out to be the 18"; I
also add to this the fourths cast upon it from the leap day, which are 4; and they yield 22;
similarly I also add to these the epacts of the three months bygone from the beginning
of October up to January, which are also 8; and, with 22, they yield 30; I also compound
the 27 <days> of January with these; and all of them together yield 57, from which I re-
move eight weeks; and one day is left out for me, which I also say to be the Sunday of
the Prodigal Son, and the other, forthcoming Sunday, which is the third of the month of
February, is Meat-Fare, for 7 and 27; they yield 34, from which cast aside 31 <days> of
January; 3 days are also left out, which are also in February, on which <day>, as is clear, I
say that Meat-Fare has also been found. I seek Passover, and I find, in the table arranged
below, that the 24™ of the month of March is placed next to the tenth cycle of the Moon.
Or also in another way. I ascertain where Passover fell in the bygone year, and I find this
on April 4; I walk 11 days back from it, and in this way too I arrive at March 24, a Sunday,
as you will find by calculation.

I want to find our holy Easter of the believers, and I reckon, from Meat-Fare
Sunday, the successive days until I have enough for 56 days, and wherever they are
completed, I say that on that day our Easter also occurs. For instance, Meat-Fare has
been found on February 3; and I cast these aside from the 28 days of February; 25 days
are also left out; I also add the 31 <days> of March to these; and together they yield
56 days. And I say that the holy Easter has also been found on the 31* of the month of
March.
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Par. The date of Passover for each lunar cycle year is set out in a table given at the end of
the treatise. An alternative algorithm, for computing Passover at lunar cycle year m + 1 once
Passover at year m is known, is as follows:

@)~

|meA’pm_ 11 :pmH'
|p, €M, p, +19=p

m+1°

Comm. This algorithm formalizes the following data:*® since each year the epacts increase
by 11 units, the date of Passover shifts backwards by 11 days from an assigned year to the next.
However, Passover cannot fall earlier than March 21; therefore, such early dates are replaced by a
date falling one lunar month later. Given the fact that 19 = - 11 (mod 30) and that Rhabdas does
not use monthly dates for p _ but counts calendar days from March 1, whenever the Passover
date falls outside the lower bound, March 21, of the 30-day Passover interval 21, <p <19, iten-
ters again this interval from its upper bound, April 19, increased by 19 days.” As usual, Rhabdas
makes a mess of the figures by mixing up counting and reckoning; he does not take into account
the saltus lunae, either.

An alternative algorithm for computing Easter

Or also in another way. Remove 3 days from the numerical date on which Meat-Fare has
been found, 4 if it is a leap year, and look at how much it is and where it falls, namely,
whether in January or in February, the <numerical date> left out, and, if the quantity left
out after the removal of three or of 4 falls in February, say that, according to this, Easter
also occurs in April; if, however, <the former falls> in January, say that <the latter> has
been found in March. For instance, Meat-Fare has been found on February 3; and I re-
move these because it is not a leap year, and I stop on January 31, and I say that Easter
occurs on the 31* of the month of March.

Starting from this, I determine the successive days of April up to the third of the
month of May, and I find that these days are 34, and I say that 34 days are also the days
of the aestival Apostles’ Fast.

Pay also attention that this algorithm will not escape you, best and loveliest of my
friends.

*% Similar algorithms are found, for instance, in George, sect. 3, in Diekamp, “Der Monch”
(cit. n. 34), 29.7-30.2; Anonymus 892, sect. 26; Psellos, sect. 1.4, in Redl, “La chronologie” (cit. n.
36), I, 213-215; Matthew Blastares, in Rhalles, Potles, Zovtayua (cit. n. 30), 417 n. 1.

% This rule shows that the actual terms for Passover are 21 uSP<19,; the traditional terms
21, < p <18, discard April 19 because this date coincides with a gap of the Passover sequence
and it is located at the end of the interval (see note 22 above).
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Par. A computation is carried out for current year AM 6850 [= 1342], and it yields (m =
10,s=18,p =24 )°>f =3 >r =31 - f =34 (therightvalueis33; Rhabdas counted days
instead of reckoning them, see sect. 14).

An alternative algorithm for Easter is:
() > f- 3+ [(y mod 4)/4]) -: L,=r—1, .

A Passover table is finally provided, originally set out with too many cells, as a phrase writ-
ten within the table itself confirms (“too many squares resulted because of a mistake”):

m| 1| 2 3,4 56| 7 89|10 |11 12| 13 (14| 15 |16 |17 | 18 |19
P | 2122y | 10|30y | 18| 7 | 27y | 15| 4 |24y | 12| 1 | 21| 9 | 29y |17 | 5 | 25, | 13

Comm. The table sets out the traditional Passover dates. The table also shows that, in the
above rule for computing Passover at lunar cycle year m + 1 once Passover at year m is known,
Rhabdas neglects the saltus lunae, for p,_and p differ by 12 days, not by 11 days as is prescribed
by the rule.

Appendix. A Thematic Word Index to Rhabdas’ Computus®

Chronological terms

A “cycle” (kbkhog: 2-6, 10-12, 15) first “begins” (&pyetar: 3, 5), then “reaches to” (avépye-
tateig: 3, 5) its last year, and finally “takes again its beginning” / “begins again first” (maAwv
Aappdvet apxny / dpxetat mp@tog: 3, 5). Temporal segments and computations go “from”
(amo; for instance the “years from the foundation of the world” ano kticewg K6oUOL €T1):
2,4,5,12) the first item “up to” (uéxpt / dxpu: 2, 7, 9-11, 13-15) the last one, which is in-
cluded if kai (translated “and including”: 7, 13-15) is added. Dates can be “above” (&vw-
Oev; also €owOev “within”: both in 12, or dmepPaiAwv “exceeding™ 13) or “below” (ka-
twOev) an assigned date (12). Past time segments are “bygone” (mapeAfovteg: 7, 10-11,

% As the clever algorithm given at the beginning of this section computes the date of Easter
without using the date of Passover, the latter date is read in the table attached to the end of
Rhabdas’ Computus or it is computed by means of the last algorithm.

¢! The most important computistical terms were also given above, in the commentary to
the relevant sections of Rhabdas’ Computus. After each lexical item, the sections of Rhabdas’
Computus that contain it are indicated; I skip the boldface. Here I adopt the same translations I
give in the thematic word index in Acerbi, “Byzantine Easter Computi” (cit. n. 19). For the partly
overlapping technical lexicon of Rechenbiicher, see K. Vogel, Ein byzantinisches Rechenbuch des
frithen 14. Jahrhunderts (Wiener Byzantinische Studien 6), Wien 1968, 141-143, and the thema-
tic word index in F. Acerbi, “Byzantine Rechenbiicher: An Overview with an Edition of Anonymi
L and J, Jahrbuch der Osterreichischen Byzantinistik 69 (2019), 1-57, at 17-20.
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15); the current (cycle) year and the “base” (Oepéliog: 1, 3, 6-8, 15) are “present” (évioTtd-
HEVOG: 2; éveoTwG: 6, 8, 10, 15; mapwv: 6, 10, 12) “now” (vdv: 2, 6, 10-12, 15); days next
in a sequence are “forthcoming” (¢pyopevar: 8, 11, 15) or “subsequent” (¢modoa: 8, 11);
a structureless time-token is an “occasion” (kaipog: 2, 9, 10, 13). The first “day” (fjuépa:
6-15) of a “month” (urv: 2-3, 5, 7, 8, 10-15) is its “beginning” (&pyn: 11, 15); the “year”
is €106 (2, 4-6, 10, 12, 15), éviavtog (2, 11-13), or xpovog (2, 3, 5, 8-10, 12, 13, 15). The
determination of the date on which a festival someone “celebrates” (¢optéget: 11) “falls”
(tuyxavet: 11, 13, 15) or “occurs” (yivetat: 11, 13-15)—or which “receives” (bmodéxetar:
11) it or on which “it is celebrated” ([¢m— / ovv]teleltaw: 11, 13, 15)—is stressed by the
correlatives “where[ver] ... there” (évBa ... év tadTn / éxel: 10/ 15) and “wherever ... in
that day” (6mov ... &v ékeivn Tf) fuépa: 15); this date may “overrun” (mapatpéyetv: 13) an
expected date. The day of the “week” (¢fdopag: 11, 13-15) on which a date falls is found
by means of a “day-finding” (fjuepoevpéoiog: 11, 15) algorithm. The “age of the Moon”
(1) fiuépa tiig oeAnvNg: 7-9; 10 mOowV Nuep®V €0 Tiv 1) oeArvn: 7, 8; the “Moon” [oenvn:
2-3,5-10, 13, 15] is also called pfjvig: 9) or a “date” (mootn: 7, 11, 13, 15; mootaia: 15) that
“falls” (éuminter: 13) within a month is also called “quantity” (moootng: 7, 13, 15); the “lu-
nar month” is also called geyyapiog (8). The Moon “shines” (@aivet: 9; @avet: 9; Aaumnet:
8, 9; nappaipet: 9; or dadovxel: 8 [here translated “to carry the torch alight”], 9) so many
“hours” (@pat: 8, 9, 12) and “minutes” (Aertd: 7-9) in a “night” (v0&: 9). A 24-hour day
is a “nychthemeron” (vuxOnuepov: 9, 12, 15), which in specific conditions is “completed”
(amotedovpevov: 12). The “Sun” (fjAog: 2-4, 8, 11, 12, 15) completes a year in 365 or 366
days, the latter occurring in a “leap year” (Bioe€tog: 8, 11-13, 15; in 8, 11, and 12 also
“leap day”; in 12 “bissextile”, as an adjective). The “epacts” (¢rmaxtai: 8, 11, 15) and the
“indiction” (ivOiktog: 2, 8) also belong to this lexical domain.

Specific mathematical terms

Investigation. yivwokw: to know (15); yvwpilw: to recognize (9, 13); é€etdlw: to ascertain
(15); ebpiokw: to find (2, 4-15) and ebpeoig: finding (2, 12); (dva){ntéw: to seek (1, 8, 9,
12-13, 15) and {rtnoug: search (7, 9-11); katdAnyig: apprehension (2); pavBavw: to learn
(1,9, 11, 13), and pdOnotg: learning (1); o0paw: to look at (15); okoméw: to consider (2,
15); broketpat: to suppose (15).

Initializing an algorithm. kpatéw: to keep (2, 4-8, 11, 15).

Counting and reckoning. dnapti{w: to complete (12) and dnaptiorg: completion (15);
dpBpéw: to reckon (14, 15) and apiBpog: number (2, 6, 7, 9-11, 13-15); €§icodpat: to be
equal to (8, 15); katavtdw: to arrive at (15); katéxw: to hold (8; “to collect’, said of taxes:
2); kpatéw: to keep (10); (kata)dapPdvw: to take (6, 8, 10, 11, 15); (kata)Afjyw: to stop
on (12, 15); hoyiCopat: to be reckoned (9); petpéw: to determine (11, 15); dmoBonodéw:
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to walk back (15); mAnpow: to fill (10) and ékmAnpwotg: filling (10, 15); moodw: to amount
to (7, 11); tehevtaw: to end in (12, 15); vmepPaivw: to overstep (8, 13); pOavw: to happen
... first (10); ynoilw: to calculate (15) and yfj@og: calculation (13). The result of any op-
eration is indicated by motéw: to make (8, 9, 11). Any quantity can be a “whole” (6A6xAn-
poG: 11) and possibly a “part” (uépog: 9), that is, a fraction.

Identification of the result of an operation as a chronological item. dno@aivopat: to
declare (9); ywvwoxkw: to know (15); ebpiokw: to find (13, 15); Aéyw: to say (6, 8-12, 14,
15); vow: to consider (7), to conceive (9); oida: to know (13, 15).

Unknown quantities. olog: what<ever> (6, 9-11, 14, 15); onoiog: what (11, 15); dmov:
wherever (15); 600g: as many, how many, whatever (6, 7, 9, 10, 14, 15); 60dkig: how many
times (4); moiog: what (11, 13, 15); moodxig: how many times (2); m6cog: what (15), how
much (7-9); méotog: what (in an ordered sequence) (13); mod: where (15); Totoo8e: such
(11); Tolovtog: such (2, 7, 10, 12, 13, 15); tooovtog: such, so much (2, 8,9, 12, 14).

Numerical sets. éBSopag: week (11, 13-15); é€nkovtag: sixty (7, 8); mevtag: pentad
(9); mevtrekaidekag: pentadecad (2, 9, 19); tetpdg: tetrad (12); tprakovtag: thirty (6-8,
10), xthtag: thousand (10).

Operations

Addition. (ouv)&Bpoilw: to put together (7, 10); émBaAAw: to cast upon (9, 11, 15); évow
Opo0: to unite together (11); mpootiOnut: to add (6-8, 10-13, 15); ovvayw: to gather (7-
9, 11); ovvtiOnuu: to compound (15). The result is indicated by yivopat: to yield (2, 4-6,
8-10, 13, 15); 6pod: together (5-6, 8, 10, 11, 13-15); ovvaywyn: gathering (2). The opera-
tion is called mpooOrkn: addition (8).

Subtraction. d@aipéw: to remove (2, 4-11, 13-15); éxBaAAw: to cast aside (2, 4, 9, 13-
15); émaipw: to raise (10, 15). The remainder is indicated by the following items: évamno-
Aeimopau (2, 4, 5, 8, 10-15), kataleimopaut (7, 8, 11-15), and kataApndvopat (2, 5, 6): to
be left out; Aoundg (10) and €midourog (10, 15): remaining; predicative Aowné: as a remain-
der (2, 4, 5); pévw: to remain (2, 4, 5, 9); mepirtedw: to remain over (2, 8). The operation
is called agaipeoig: removal (15).

Multiplication. moAv- / moAamhaotdlw: to multiply (9); petpéw: to measure (10).
However, multiplication is mainly formulated by means of an —akig adverb (2, 6, 9, 10,
12). The result is indicated by participial forms of yivopat: to result (6, 9). The operation
is called moAAamhaotaopog (6, 10).

Taking multiples. év8exanAaciacov: undecuple (6, 10); tetpanlaciale: quadruple (9).

Division. pepilw mapd: to divide by (4, 5, 9),
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Modulo reduction. dvaldw eig / €mi / mapd: to resolve out into (2, 5, 12); daipéw
Tapd: to remove by (4); Staupéw eig: to remove by (12); dpapéw émi: to remove by (4, 12).
The remainder is indicated by the participial forms ta ebpioxopeva / kataleipBévta /
évamohelpOévta katwOev: that which is found / left down (2, 4-7, 10-12, 15).

Metadiscourse

Mathematical universality and generality are conveyed by the adverbs “always” (éet: 9,
13; mavtwg: 2, 4, 9, 12, 13; névrtote: 13) and “altogether” (mavteAdq: 13, 15). Iteration
is formulated by “successive[ly]”, “in succession” ([kaO- / é@]é€ig: 7, 8, 11, 13-15), ap-
proximation by “very nearly” (§yyiota: 8). An “algorithm” (ué6odog: 1 [here translated
“systematic exposition”], 2, 4, 5, 7-11, 14, 15; €podog: 9) may be “easy” (p&diog: 2, 8, 12,
13), “concise” (oVvTopoG: 2, 4, 5, 8, 12), “general” (kaBoAov: 8; kaBoAwkr: 7), and “exact”
or “accurate” (&kptPng: 7, 13), it may also “prove true” ([ém]dAnOever: 9). A quantity to
be discarded is marked by “to neglect” (¢aw: 15). Examples are introduced by “for ins-
tance” (oiov: 9, 14, 15) or by “for example” ([émi / ue®’] vmodeiyparog [xaptv]: 6, 8-11,
15). Metamathematical markers include the modal operators “one must” (8¢i: 10, 15)
and “by necessity” (¢§ dvdaykng: 8, 11), verbal adjectives with termination -téov (2, 3,
8-13), the verb “to need” (xpnlw: 10, 11, 15), modal “should” (uéheu: 8, 9, 11, 13), the
volition verbs “to wish” (BobAopat: 2, 4, 5, 15), “to want” ([¢]6éAw: 7, 9, 11, 12, 15), and
“to hesitate” (oxvéw: 2). The verb forms “(we) say” (Aéyouev: 4, 6, 8-12; Aéye: 2; einé: 2,
5) and “(we) do” (moiet: 4, 5; molodpev: 10) introduce a computation. The adverb “as fol-
lows” (oUTwg: 2, 4-6, 8-15) introduces an algorithm; the adverb “similarly” (6poiwg: 11,
12, 15) replaces an algorithm that is identical to an algorithm previously carried out. The
syntagms “as clarified / said above” (wg [dvwTépw] dednAwtan / elpntat: 2, 4, 5, 8, 12),
“given” (doOeioa: 9; dedopévn: 10), “written above” (mpoypageioa: 15), and “expounded
(above)” ([mpop]pnbeioa: 9) refer to a known algorithm. An entry in a “table” (mAwv0ic:
15) has a number “placed next” (mapaxeipevog: 15) to it.
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